

دوره آموزشی

آشنایی با تست و دستورالعمل جوشکاری WPS/PQR مطابق با استاندارد ASME

زمان: بهمن ۱۳۷۹ مکان: دانشکده مکانیک دانشگاه صنعتی امیرکبیر

آشنایی با تست و دستورالعمل جوشکاری

فردت دوس همایس

فهرست مندرجات

١	••••••	– مروری بر فرایندهای جوشگاری	فصل اول
٣٢		- مشخصات روش جوشکاری WPS	فصل دوم
۷۳	PQR	، - گزارش کیفیت روش جوشکاری ۱	فصل سوه
97		رم – ضمائم	فصل چها

آشنایی با تست و دستو *ر*العمل جو شکا*ر*ی

مقدمه

برای تولید محصولی مطلوب ، تجربه در تولید همواره یکی از عوامل مهم به حساب می آید. تجربیات تولید در کشورهای صنعتی بصورت استاندارد مکتوب شده اند تا با استفاده از آنها خطاهای گذشته تکرار نشود و علاوه بر صرفه جویی در وقت و مواد اولیه باعث بالا رفتن کیفیت در تولید شوند.

برطبق کلیه استانداردهای صنعتی ، قبل از هر گونه عملیات جوشکاری تهیه روش جوشکاری (WPS) و ثبت آزمایشات و تائید آن (PQR) از حداقل پیش نیازهای شروع جوشکاری است.

مشخصات روش جوشكاري Welding Procedure Specification ، مراحل مختلف جوشكاري يك اتصال و اطلاعات لازم و مربوط به أن را به تفصيل بيان مي كند. در حقيقت مشخصات روش جوشكاري ، محدوده و مقادیر متغیرهای دخیل در فرایند و مشخصات مواد پایه و فلز پرکننده را تعیبین می کند. می توان گفت مشخصات روش جوشکاری کنترل کننده و متضمن کیفیت قطعه جوشکاری شده است. بنابراین هر اتصال نیاز به یک مشخصات روش جوشکاری (WPS) دارد و أزمایشات کنترل کیفی که براساس استانداردها برای هر اتصال تهیه و ارائه می شود، نشان دهنده اجـرای صحیـح روش جوشـکاری پیشنهآدی است.

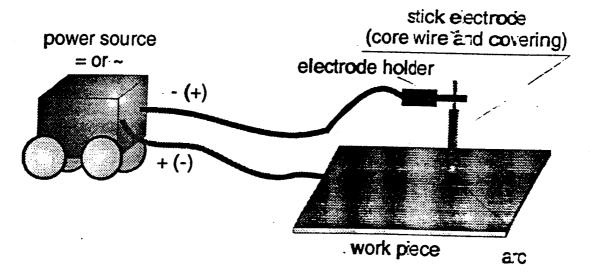
لازم به ذکر است که استاندارد و مشخصات کیفیت یک قطعه جوشکاری شده به هنگام طراحی ، براساس کدهای مختلف کیفیت بیان می شود. این کد و درجه بندی بسته به حساسیت کار، شرایط و امکانات سازنده و کشور تولید کننده متغیر است. لذا روش جوشکاری و بدنبال آن کنترل کیفیت نیز براساس همان استاندارد انجام می پذیرد.

در این دوره ، در فصل اول بطور فشرده ، فرایندهای جوشکاری متداول را بررسی می کنیم. سپس در فصل دوم به مشخصات روش جوشکاری(WPS)و نحوه تعیین متغیرهای مختلف آن می پردازیم. فصل سوم را به بررسی گزارش کیفیت روش جوشکاری (PQR) اختصاص داده ایم. در بخش ضمائم نیز نمونه هایی از جداول و اطلاعات مورد نیاز ارائه شده است.

در پایان لازم میدانم از دوست ارجمندم جناب آقای مهندس سعید محبوبی پور که همواره مشوقم بوده و همراهیشان هماره راهگشا، تشکر و قدردانی نمایم.

نيما هنرمنديان

Uglupo مروری برفرایندهای جوشكاري



تعریف:

قومی الکتریکی مایین الکترود مصرف شدنی و قطعه کار برقرار می گیردد. قیوس و حوضچیه میذاب و سیرباره ایجند شده در نتیجه مصرف شین الکترود ، توسط گازهای محافظ محافظت می گردند.

اصول:

•

قطبیت لکترود پوشش دار در حالت استفاده از برق مستقیم (DC): الکتروددی آسیدی و روتیلی بید به قطب منفی متصل گردند. الکترود دی توع بای و تمام لکترودهای پوشش دار آلیاژ بالا باید به قطب مثبت متصل گردند.

> شروع و نوع افروزنی قوس : انتقال قصرنت بصورت تتصال کوتاه صورت می پذیرد.

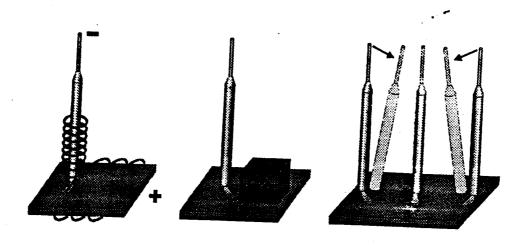
> > انواع منبع تامین نرژی:

۱. كنورتير : توليد رق مستقيم (DC) مي كند

٢. ركتي فايير (يكسوكتنده): توليد برق مستقيم (DC) مي كند.

٣. ترانس: توليد برق متناوب (AC) مي كند

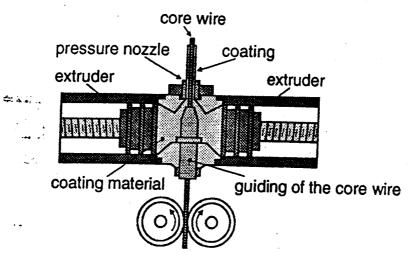
(



شركت كاوش همايش

يديده وزش قوس:

عبور جریان الکتریکی در الکترود ، قطعه کار و کابل زمینی یک حوزه مغناطیسی را بوجود می آورد که بصورت دابره های متوالی عمود بر عبور جریان می باشند . هنگامیکه حوزه اطراف قطعه کار یا الکترود نامتعادل باشد ، قوس بطرفی که تمرکز حوزه بیشتر است انحراف می یابد. این انحراف از حالت حقیقی و نرمال به وزش قوس ٔ (Arc Blow) مشهور است و بیشتر در جریان یکنواخت رخ می دهد زیرا گرچه حوزه مغناطیسی از نظر جهت ثابت است ولی در جریان متناوب بعلت تغییر جهت جریان الکتریکی در هر نیم سیکل این عمل کمتر اتفاق افتاده و يا ناچيز است .


در مواقعیکه * وزش قوس * زیاد باشد ، جوش کامل بوجود نیامده و همراه با جرقه ها و ترشـحات زیـادی مـی

راد های جلوگیری و کاهش وزش قوس عبارت است از :

- تغيير نوع جريان الكتريكي از حالت يكنواخت به متناوب
 - کاهش شدت جریان آنکتریکی
 - كاهش طول قوس الكتريكي تا حد ممكن
- در صورت امکان پیچینن کابل متصل به زمین به قطعه کار (که در اینصورت حوزه مغناطیسی دیگری ایجاد شده و حوزه مننطیسی قدیم را خنثی می کند) .
- تغییر محل کابل زمین به مکانهای دورتر از محل جوش ، در انتهای جوش و یا در محل انجام جوش بطرف نقطه جوش بزرگ .

نحوه ساخت الكترود هاى پوشش دار:

electrode press with two bulbs

نحوه تغذیه پرسها: تغذیه پرسها عموما بصورت مکانیکی و یا هیدرولیکی انجام می گیرد. توجه: علاقمندان در مورد سیم لخت کشش یافته و قطع شده در طولهای مناسب برای مصارف جوشکاری می توانند به استاندارد DIN668 مراجعه نمایند.

> مواد چسب مورد استفاده : عموما از ترکیب K2SiO3 و Na2SiO3 استفاده می گردد. نسبت پوشش (Cover Ratio) :

نسبت هاى يوشش الكترودها بر اساس استاندارد EN 499:

الف: پوشش نازک = بیشتر از ۱۶۰ درصد

ب: پوشش متوسط = ۱۶۰ درصد

ج: پوشش ضخیم = بیشتر از ۱۶۰ درصد

بازده الكترود:

میزان بازده و راندمان یک الکترود بر اساس فرمول ذیل محاسبه می گردد:

نحوه شناسايي الكترودها:

برای شناسایی الکترودها می توان به علائم چاپ شده روی پوشش یا رنگهای ویژه در انتهای الکترودها مراجعه کرد.

نحوه شناسایی الکترودها بر اساس استاندارد امریکا:

انجمن جوشکاری ایالات متحده امریکا (AWS) ، قواعدی در مورد شناسایی و طبقه بندی الکترودها وضع کرده که مورد تصویب و تایید انجمن امریکایی آزمایش مواد (ASTM) قرار گرفته است . در طبقه بندی AWS ، هر الکترود با یک حرف و یک عدد چهار یا پنج رقمی مشخص می شود :

۱ . حرف سمت چپ در مورد جوش گاز G و در مورد جوش قوسی با الکترود دستی E می باشد.

۲. دو رقم سمت چپ از عددهای چهار رقمی (یا سه رقم سمت چپ از عددهای پنج رقمی) مقاومت کششیی
 فلز جوش را بر حسب هزار پوند بر اینج مربع تعیین می کند.

۳. دومین رقم از سمت راست ، حالت جوشکاری را که الکترود برای آن طراحی و ساخته شده است ،بیان می کند . الکترودهایی که دومین رقم سمت راست آنها عدد یک است (XX1X) برای جوشکاری در تمام حالتها (تخت ، افقی ، قائم و بالای سر) مناسب هستند. الکترودهایی که دومین رقم سمت راست آنها عدد ۲ می باشد (XX2X) برای جوشکاری در حالتهای تخت و افقی و الکترودهایی که دومین رقم از سمت راست آنها ، عدد ۳ می باشد (XX3X) فقط برای جوشکاری در وضعیت تخت مناسب می باشند.

۴. رقم اول سمت راست از این اعداد معرف نوع برق ، نوع روپوش ، مقدار نفوذ قوس و سایر خصوصیات گـرده جوش بر اساس جدول ذیل می باشد :

	10 0. 0, 10	<u>, , , , , , , , , , , , , , , , , , , </u>
توع جريان برق (الف)	روپوش	رقم جهارم
جریان مستقیم قطب معکوس (ج)(د) متناوب یا مستقیم (ج)(د)	پرسلولز، سديم (ب)، پراکسيد آهن (ج)	•
متناوب یا مستقیم قطب معکوس	پرسلولز ، پتاسیم	١
متناوب یا مستقیم (ه) قطب معکوس	پرتیتان ، سدیم	۲
متناوب یا مستقی م (۵) ۔	پرتبتان، پتالیم	٢
متناوب یا مستق یم (ه) یت	پودر آهن ، تيتاني	۴
مستقيم قطب معكوسيء	کم هیدروژن ، سدیم	۵
متناوب یا مستقیم قطب معکوس	کم هیدروژن پتاسیم	۶
متناوب یا مستقیم (د)	پودر آهن ، اکسید آهن	Υ
متناوب یا مستقیم قطب معکوس	پودر آهن ، کم هيدروژن	٨

الف: AC = جريان متناوب، DC = جريان مستقيم (دائم) ، DCEN = DCRP = جريان مستقيم قطب معكوس DCEP = DCRP = جريان مستقيم قطب مستقيم

- ب) وقتى كه رقم سوم ١ است .
- ج) وقتی که رقم سوم ۲ است .
- د) هر نوع قطب برای جوشهای تخت ، جریان مستقیم قطب مستقیم برای جوشهای افقی گوشه ای .

ه) هر نوع قطب نحود شناسایی الکترودها بر اساس استاندارد اروپای متحد (EN):

الکترودهای جوشکاری در استاندارد شماره EN499 به صورت دیل قابل شناسایی می باشند:

مثال: EN499 - E46 3 1Ni B 54 H5

EN 499 : شماره استاندارد

E: مشخصه الكترود

46: مشخص كننده حداقل استحكام تسليم الكترود، مراجعه به جدول شماره ١

3: مشخص كننده درجه حرارت انجام تست ضربه ، مراجعه به جدول شماره ٢

iNi : مشخص کننده ترکیب شیمیایی ، مراجعه به جدول شماره ۳

B: مشخص كننده نوع روپوش الكترود

5: نرخ رسوب و نوع جريان الكتريكي ، مراجعه به جدول ۴

4: وضعیت جوشکاری ، مراجعه به جدول ۵

H5 : ميزان مجاز هيدروژن موجود در الكترود ، مراجعه به جدول ۶

جدول شماره ۱

عدد مشخصه	جداقل مقاومت تسليم (N/mm2)	استحکام کششی (N/mm2)	درصد اردیاد طول ٪
35	355	440 - 570	22
38	380	470 - 600	20
42	420	500 - 640	20
46	460	530 - 680	20
50	500	560 - 720	18

جدول شماره ۲

i	مشخصة	دمای آزمایش شکست با ۴۷ ژول	
	Z A 0 2 3 4 5	تست شکستی انجام نشده است +20 0 -20 -30 -40 -50	
Ĺ			

جدول ۳:

الباز	Mn	Мо	Ni
بدون علامت اختصاري	2.0		
Мо	1.4	0.3 - 0.6	***
MnMo	>1.4 - 2.0	0.3 - 0.6	-
1Ni	1.4		0.6 - 1.2
2Ni	1.4		1.8 - 2.6
3Ni	1.4		>2.6 - 3.8
MnlNi	>1.4 - 2.0		0.6 - 1.2
lNiMo	1.4	0.3 - 0.6	0.6 - 1.2
Z	<u>در</u>	هر نوع ترکیب شیمیایی دیا	

جدول ۴:

علد مشخصه	درصد ترخ رسوب (٪)	نوع جريان الكتريكي
1 2	≤105 ≤105	جریان متناوب و مستقیم
		جريان مستقيم
3 4	>105 ≤125 >105 ≤125	جریان متناوب و مستقیم
		جريان مستقيم
5 6	>125 ≤160 >125 ≤160	جریان متناوب و مستقیم جریان مستقیم
7 8	>160 >160	جریان متناوب و مستقیم جریان مستقیم

جدول ۵:

قابل کاربرد در وضعیت	عدد مشخصه
تمام وضعيت ها	1
تمام وضعيت ها بجز وضعيت سرپايين	2
جوشهای یخ دار در حالت تخت ، جوش گوشه ای در حالت تخت و افقی	3
جوشهای پخ دار در حالت تخت ، جوش گوشه ای در حالت تخت	4
وضعیت سرپایین و حالت 3	5

جدول ۶:

مشخصه	میزان هیدورژن بر حسب میلی لیتر در ۱۰۰ گرم فلز جوش
H5	5
H10	10
H15	15

توجه : علاقمندان برای آشنایی با نحوه شناسایی الکترودها در استانداردهای انگلیسی ، سازمان بین المللی استاندارد ، آلمانی ، فرانسوی ، ایتالیایی و ژاپنی می توانند به کتاب ٔ الکترود ٔ نوشته آقای مهندس ادب آوازه و برای آشنایی با الکترودهای ساخت داخل کشور به کاتالوگ های این شرکتها مراجعه نمایند.

بازيخت الكترودها:

برای آشنایی با میزان بازپخت الکترودها بر اساس شرکت سازنده و استاندارد مورد استفاده در کار ، اعداد و زمانهای متفاوتی قید شده است . بطور مثال در استاندارد اروپای متحد (EN) آمده است :

الف) برای استفاده از الکترودهای اسیدی و رتیلی ، باید آنها را قبل از استفاده در دمای ۸۰ الی ۱۲۰ درجه سانتی گراد تا ۲ ساعت بازیخت نمود.

ب) برای استفاده از الکترودهای بازی ، باید آنها را قبل از استفاده در دمای بیشتر از ۳۰۰ درجه سانتی گراد بین ۲ تا ۴ ساعت بازپخت نمود.

مثالهایی از ابعاد و میزان جریان مورد نیاز برای استفاده از الکترودهای پوشش دار :

قطر d.mm	۲/۰	۲/۵	7/7	*/•	۵/۰	51.
طول L ،mm	70	٣٥٠	70·-40·	۳۵۰-۴۵۰	40.	40.
جریان I ، A	ド・ -人・	۵۰-۱۰۰	910-	177	1477.	7775.
قانون سرانگشتی برای حداقل A	۲۰۰	ď	·	۲۰ ∗ d		70 * d
قانون سرانگشتی برای حداکثر A	۴.*	đ		۵۰* d		۶۰ + d

وظايف پوشش الكترود:

۱. اصلاح و تقویت قوس الکتریکی:

الف) افروزش و شروع قوس بهتر

ب) تصحيح خواص فلز جوش

۲. ایجاد سرباره (گل جوش):

الف) تاثیرگذاری بر روی اندازه و نوع قطرات ایجاد شده

ب) محافظت از قطرات ایجاد شده و فلز جوش ذوب شده در مقابل تاثیرات منفی هوا

ج) کمک به شکل گیری بستر و فرم مناسب پروفیل جوش

د) محافظت در برابر سرد شدن سریع فلز جوش

٣. ایجاد اتمسفری مناسب با ایجاد گار محافظ:

الف) با استفاده از مواد آلی

CaCO3 → CaO + CO2

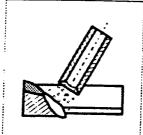
ب) با استفلاه از ترکیبات کربنات

۴. اکسید زدایی و کمک به افزایش اثر عناصر آلیاژی:

توجه : عناصر دى اكسيد كننده موجود در پوشش الكترودها ، غالباً Mn ، AL و Si مي باشند.

أناليز استاندارد اتواع الكترودهاي پوشش دار:

نوع سلولزی (C)

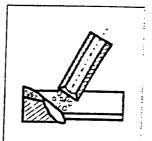

cellulose		40 %
rutile	TiO,	20 %
quartz	SiO.	25 %
FeMn	•	15 %
waterglass	;	

no slag

drop transfer: medium size drops

toughness values:

نوع اسیدی (A)

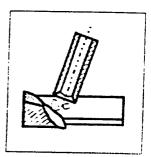

magnetite Fe₃O₄ 50 % quartz SiO₂ 20 % lime stone CaCO₄ 10 % FeMn 20 % waterglass -

solidification interval of the slag: large

drop transfer: fine size drops up to spray typed

toughness values:

نوع رتيلي (R)


rutile TiO₂ 45 % magnetite Fe₃O₄ 10 % quartz SiO₂ 20 % lime stone CaCO₃ 10 % FeMn 15 % waterglass

solidification interval of the slag: middle

drop transfer: medium size drops up to fine size drops

toughness values:

نوع بازی (B)

flour spar CaF, 40 % lime stone CaCO, 20 % quarz SiO, 25 % FeMa 15 % waterglass

solidification interval of the slag: large

drop transfer: medium size drops up to large size drops

toughness values: very good

اثر و علت افزودن تركيبات و عناصر كوناكون به پوشش الكترودها:

تأثير بر خواص جوشكارى	مواد موجود در پوشش
افزایش ظرفیت حمل جریان – رقیق کننده سرباره (گل جوش)	کوارتز – SiO2
افزایش قابلیت جدا شوندگی سرباره و ظاهر پروفیل جوش- شروع قوس خوب	روتیل – TiO2
افزایش دهنده قابلیت انتقال قطرات	مگنتیت – Fe3O4
کاهش دهنده ولتاژ مورد نیاز – تشکیل دهنده سرباره و ایجاد گاز محافظ	ليمستن - CaCO3
رقیق کننده سریاره در پوشش های بازی – ناپایدارکننده قوس	فلورواسپار – CaF2
کمک به افزایش یونیزاسیون و پایدارکننده قوس	K2O Al2O3 6SiO2
اکسیژن زدا (احیاء کننده)	FeMn / FeSi
ایجاد کننده گاز محافظ	سلولز
روغن کار (روانساز)	گل چینیAl2O3 2SiO2 2H2O
چسب	K2SiO3 / Na2SiO3

الكترودهاي با يوشش سلولزي:

الکترود با پوشش سلولزی دارای قوس پر نفوذ و پرنیرو است و برای جوشکاری درتمام حالات مناسب است . معمولا این الکترودها بوسطه فقدان عناصر پایدارکننده قوس در پوشش ، فقط با جریان مستقیم و قطب مثبت (DCEP) قابل استفاده می باشند. سرباره تولید شده تقریبا قابل صرف نظر کردن است که خود براحتی از روی جوش برداشته می شود. جوش حاصل از این الکترودها دارای خواص مکانیکی خوبی است. ماده تشکیل دهنده اصلی این نوع الکترودها ، سلولز است که در حین جوشکاری تولید گاز محافظ (دود جوشکاری) می کند. این نوع الکترودها دارای دود زیاد ، قوس بسیار نافذ و پاشیدگی نسبتا و زیاد ، سطح جوش خشن و مهره های فاصله دار ناهموار می باشند. در این نوع الکترود نیازی به حرکت انبر (اسیلیشن) نیست و بسیار مناسب برای جوشکاری لوله ها و بویژه پاس ریشه هستند . این الکترودها تولید مقادیر زیاد هیدروژن می کنند که خطر تردی هیدروژن را در پی دارد. فلز جوش قبل و بعد از جوشکاری نیاز به پس گرم و پیش گرم دارد (پیش گرم برای لوله ها : ۲۰۰ – ۲۰۰ درجه سانتی گراد). اندازه قطرات جدا شونده در حد متوسط است و فیلز جوش از تافنس خوبی برخوردار است .

الكترودهاي با پوشش رتيلي :

پوشش این الکترودها دارای مقادیر قابل توجهی از ترکیبات اکسید تیتانیوم است. این الکترودها شروع قـوس راحتی دارند و مخصوصا برای جوشهای کوتاه در فولادهای معمولی ، برای جوشهای گوشه ای ، برای جوشهای ورق و برای پل زنی فاصله های بزرگ در اتصال ، مناسب می باشند.

این الکترودها نسبتا به رطوبت حساسیت ندارند و جدا شدن سرباره بسیار عالی است . گرده جوش ظریف بوده و نفوذ جوش متوسط می باشد. بعلت وجود ترکیبات رتیل و عناصر یونیزه کننده در پوشش این الکترودها، می توان از جریان برق متناوب نیز استفاده کرد ولی در صورت استفاده از برق مستقیم ، ترجیحا از وضعیت استفاده شودمقدار هیدروژن تولیدی متوسط است و کیفیت جوش نیز متوسط است . اندازه قطرات جداشونده در حد تقریبا ریز بوده و فلز جوش از تافنس خوبی برخوردار است .

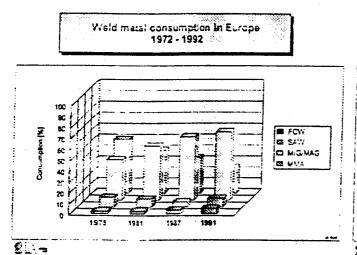
الكترودهاي با پوشش اسيدي:

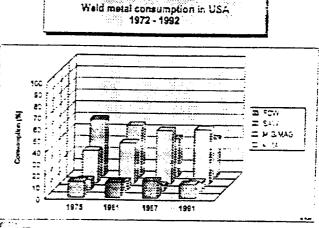
پوشش این نوع الکترودها دارای ترکیبات اکسیدی و کربنات های منگنز و آهن و مقداری سیلیسیم است. الکترود با پوشش اسیدی ، جوش بسیار هموار و براق تولید می کند و سرباره براحتی از روی جوش جدا می شود و به همین جهت جوشکاران تمایل زیادی برای کار با آن دارند. اندازه قطرات جداشونده بسیار ریز است و تافنس فلز جوش در حدمعمولی بوده و برای استفاده در تمامی حالات جوشکاری ، مناسب می باشند. این نوع الکترودها در آلمان و اروپا در حال منسوخ شدن است .

الكترودهاي با پوشش بازي:

این نوع الکترودها مهمترین نوع الکترود از نظر متالورژیکی هستند. پوشش این نوع الکترودها دارای مقادیر قابل توجهی فلورید و کربنات کلسیم است. بعلت میزان رطوبت کم در پوشش الکترود ، جوش حاصل دارای حداقل مقدار هیدروژن نسبت به انواع دیگر الکترود است.

بعلت تولید فلز جوش با هیدروژن کم ، این نوع الکترود برای جوشکاری فولادهای کـم آلیاژی کـه در مقابل ترک خوردن منطقه مجاور جوش (HAZ) حساس هستند ، بسیار مناسب است. همچنیان جوش حاصل مقاومت خوبی در برابر ترک برداشتن گرم (Hot Cracking) دارد و برای فولادهای ضخیم و کربن بالا نیز مناسب است. فلز جوش دارای خواص مکانیکی خوب ، بویژه مقاومت بـه ضربـه است. ایان نوع الکترودها سهولت کاربرد ندارند ولی در تمام وضعیت ها و با برق مستقیم (ترجیحا ' DCEP) و متناوب قابل کاربرد می باشند. بازیخت این الکترودها الزامی است. مقداری پودرآهن (بین ۵ تا ۵۰ درصـد) بـه منظور بالابردن نارخ رسوب و بهتر کردن رفتار قوس ، به پوشش این الکترودها اضافه می گردد.


باید توجه کرد که در الکترودهای معمولی ، جریان الکتریکی تنها از هسته الکترود عبور می کند اما در الکترودهای پور آهنی ، پوشش الکترود نیز هدایت کننده جریان الکتریکی است که درنتیجه قوس پهن تر شده و رسوب در سطح بیشتر و با نفوذ کمتری انجام می گیرد. عبور جریان الکتریکی از پوشش الکترود ، اتصال کوتاه بین الکترود و کار را محدود کرده و مقدار ترشح را کاهش می دهد. این اثر موجب پایداری قوس و صاف تر شدن سطح فلز جوش می شود. در اثر استفاده از این نوع الکترودها ، عیب بریدگی در کناره جوش (Cut) کمتر مشاهده می شود. اندازه قطرات جداشونده درشت بوده و تافنس فلز جوش در حد بسیار خوبی



بقدعه

(

در شروع دهنه ۱۸۰ - ۱۹۸۰ - ۱۹۷۰ میلادی ا توسعه و پیشرفتهای جشمگیری در تکنولوژی جوشکاری و برشکری رخ داد. فرایندهای MIG/MAG بصورت جدی پایه ریزی شد و جایگزین جوشکاری ب انکشرود دستی گردید. روش لیزر برای مصارف جوشکاری و برشکاری و در پی آن سیم های توپودری توسعه یافتند. در آینده به نظر نمی رسد که تغییرات زیادی را در تکنولوژی جوشکاری و برشکاری مشاهده کنیم ، در عوض به احتمال خیلی قوی توسعه و پیشرفتهای امروزه با تغییراتی جزیی در روشهای موجود ادامه خواهند یسافت. با یک نگه به فرایندهای جوشکاری تجاری امروز از مانند جوشکاری زیرپودری ، جوشکاری قوسی با الکشرود دستی و MIG / MAG) براحتی می توان دریافت که از اواسط دهه ۱۹۷۰ میلادی یک کساهش در جوشکاری قوسی با گساز محسافظ MAG / MIG در سراسر دنیا بوجود آمده است. (شکل ۱)

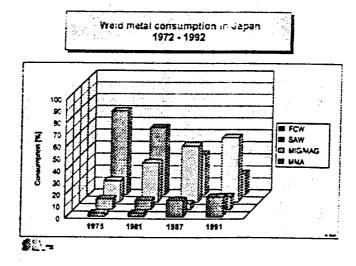


Figure 1

شکل ۱ نشاندهنده مصرف فلز پرکننده (Filler Metal) است دیگر روشها که یا بصورت کم و یا به هیچ عنوان از فلز پرکننده در آنها استفاده نمی شود (مانند جوشکاری TIG و پلاسما) در ایس مقایسه آورده نشده استفاده از جوشکاری توپودری (FCAW) در ژاپن و لروپای غربی توسعه یافت و کاربرد آن به علت راندمان و بهره وری بالا نسبت به جوشکاری قوسی با الکترود دستی (SMAW) روز به روز بیشتر و بیشتر گردید.

هم اکنون از سیم های توپودری (FC) بصورت گسترده استفاده می گردد و به نظر می رسد در آینده استفاده از آنها کمتر گردد از این سیم جوشها بصورت محدود در صنایع کشتی سازی نیز استفاده می گردد.

جوشكاري قوسي با كار محافظ MIG/MAG:

هم اکنون جوشکاری قوسی با گاز محافظ بیشترین مصرف را در اروپای غربی ، ژاپن و ایالات متحده امریکا دارد. استفاده از این فرایند در آینده نیز توسعه و پیشرفت خواهد داشت ، گرچه به نظر نمی رسد که این میزان استفاده به بزرگی و اندازه دهه ۱۹۸۰میلادی باشد. جوشکاری با گاز محافظ (MIG / MAG) بعنوان یک فرایند با بهره وری (Productivity) بالا مشهور شده است ، گرچه همواره و تحت هر شرایط نمی توان کیفیت های بالای اتصال را با ین فرایند بدست آورد. شاید مهمترین هدف اصلی در این سالها تغییر این فکر بوده است در ژاپن این امر محقق شده است و هم اکنون جوشکاری با گاز محافظ بقدری توسعه یافته است که می توان جوشهای با کیفیت بالا ، نظیر جوشهای مخازن تحت فشار ، را با این فرایند ایجاد نمود. جوشکاری مخازن راکتورهای هسته ای نیز نه تنها در ژاپن ، بلکه در تمام اروپای غربی نیز با این روش قابل انجام است. در اواسط دهه ۱۹۸۰ میلادی ، تحقیق کاملی برای افزایش بهره وری در فرایندهای MIG / MAG با افزایش سرعت جوشکاری و نرخ رسوب انجام گردید. این امر با تحقیقات با ارزشی برای توسعه منابع انرژی ، تورچ ها و گازهای محافظ لدامه یافت. در پایان این تحقیقات ، روش جوشکاری با نرخ رسوب بالا اختراع شد و به همین جهت نام های تجاری دیگری نظیر قوس سریع (Rapid Melt) ، ذوب سریع (Rapid Melt) ، تایم (TIME)

جوشكارى قوسى با "كترود مصرف نشدنى تنگستن (TIG) :

فرایند TIG مهمترین روش کیفیتی برای اتصال فولاد صد زنگ و فلزات غیر آهنی است ، با ایس وجود موارد مصرف این فرایند رو به فزایش است تا آنجا که اکنون افزایش بهره وری و راندمان بوسیله معرفی سیم داغ اضافی (Hot Wire Addition) و یا جوشکاری فضای باریک (Narrow Gap Welding) امکان پذیر شده است. همچنین جوشکری پالس تیگ (Puls TIG) و تکنیک های اوربیتالی برای کاربردهای متفاوت (بعنوان مثال صنایع شیمی که کیفیت بالا در آنها بسیار حیاتی و مورد نیاز است) ، توسعه یافته اند.

گروه مهندسین بین المللی جوش ایران

جوشكاري پلاسما:

فرایند جوشکاری پلاسما ، شباهتهایی با فرایند جوشکاری TIG دارد تا آنجا که جوشکاری پلاسما را توسعه فرایند TIG و با مزایای بالا می دانند. جوشکاری پلاسها برای فولادهای ضدزنگ با ضخامت ۱۰ تا ۱۰ میلیمتر ، مناسب می باشد. این روش برای جوشکاری فولادهای کم کربن مورد استفاده قرار نمی گیرد ، علت آن هم این است که جوشکاری فولادهای کم کربن معمولا توسط دیگر فرایندها امکان پذیر بوده و فرایند پلاسما یک روش نسبتا گران و هزینه بر است.

بعنوان مثال از مزایای این روش می توان به انتقال پایین حرارت به قطعه کار و کیفیت بسیار بـالای جـوش و عدم نیاز به ایجلد یخ سازی ، اشاره کرد. از دیگر مزایای این روش می توان از عدم حساسیت به طـول قـوس ، پایداری قوس خوب و عدم وجود ناخالصی تنگستن می باشد.

گازهای محافظ:

نحوه طبق بندی فرایندهای جوشکاری قوسی با گاز محافظ بر اساس استاندارد DIN 1910 بخش چهـرم در شکل ۲ آمده است.

Gas-shielded-arc welding processes

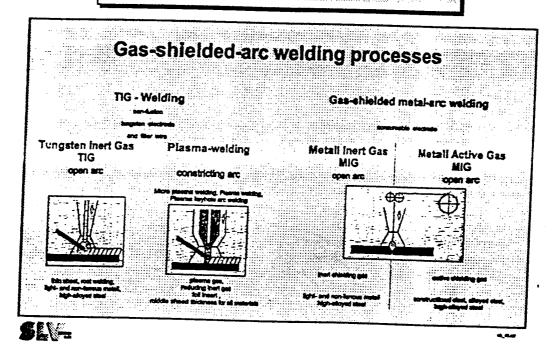


Figure 2

مورد مصرف ترین فرایندهای جوشکاری با درنظر گرفتن کاربردهای متفاوت ، روش های متفاوت ، گازهای متفاوت ، گازهای متفاوت در شکل ۳ آمده است.

General arrangement to metall welding process DIN 1910 Part 4

Figure 3

در جوشکاری قوسی با گاز محافظ ، گاز یک نقش اصلی و اساسی را بازی می کند. ایس وظیفه ، محافظت از حوضچه مذاب و فلز ذوب شده و الکترود تنگستن از اثرات تخریب کننده هوا و ایجاد وضعیت مناسب برای قوس است. در صورتیکه هوا با حوضچه مذاب یا فلز گرم شده (مذاب) تماس گبرد ، اکسیژن موجود در هوا باعث اکسید شدن فلز و یا الکترود تنگستن می شود. نیتروژن و رطوبت موجود در هوا نیز موجب ایجاد تخلخل (POROSITY) و همچنین نیتروژن موجب ایجاد تردی در فلز جوش می شود.

ترکیب شیمیایی گاز محافظ بر روی انتقال مواد از الکترود ذوب شونده به حوضچه مذاب تاثیر می گذارد که در نتیجه بر روی اندازه قطرات ایجاد شده نیز اثر می گذارد. همچنین ترکیب گاز محافظ بر روی نوع پروفیل جوش ، هندسه جوش و سرعت جوشکاری تاثیر می گذارد.

گازهای محافظ برای جوشکاری به دو دسته خنثی (INERT) و فعال (ACTIVE) تقسیم می شوند. گازهای خنثی در واکنش های شیمیایی رخ دهنده در قوس و حوضچه مذاب شرکت نمی کنند ، در صورتیک گازهای فعال در این واکنش ها شرکت می کنند.

استاندارد جدید اروپا برای گازهای محافظ برای جوشکاری قوسی و برشکاری (EN 439) راهی مناسب بـرای طبقه بندی گازهای محافظ بر اساس ترکیب شیمیایی آنها در پیش رو شما می گذارد.

استاندارد 439 EN در برگیرنده خواص گاز ، طبقه بندی ، خلوص ، میزان رطوبت و نحوه تهیه آنها نیز می باشد. در این استاندارد ، گازهای محافظ در ۷ گروه طبقه بندی می شوند :

F و بر اساس خاصیت خنثی بودن ، اکسیدکنندگی و احیاءکنندگی . F و بر اساس خاصیت خنثی بودن ، اکسیدکنندگی و احیاءکنندگی . جدول ۱ خلاصه ای از گروه های مختلف و دیگر ترکیبات موجود در این گرو ها را بر اساس شش ترکیب گازی ویژه نشان می دهد.

Symbol 1)		Components, % (V/V)						Typical	1.
Group	Identi	Oxi	dizing	, i	nert	Reducing	Unreactive	applications	Remarks
	fication	CO2	0,	Ar	Hø	H,	14,		
R	1			Balance 20		> 0 to 15		TIG,	
	2			Balance 2)		> 15 to 35		plasma arc welding, plasma arc cutting,	Reducing
			-	100	··			back shielding	
	1			100				MIG, TIG,	
1	2 3			Balance	100 > 0 to 95			Plasma arc welding, back shielding	Inert
	1	> 0 to 5		Balance 2)		> 0 to 5			Slightily
M 1	2	> 0 to 5		Balance 2					oxidizing
	3		> 0 to 3	Balance 20					
	4	> 0 to 5	> 0 to 3	Balance 2					
	1	> 5 to 25		Balance 2)					
M 2	2		> 3 to 10	Balance 20				MAG	
1	3	> 0 to 5	> 3 to 10	Balance 20	j				
1	4	> 5 to 25	> 0 to 8	Balance 2			Ì		
	1	> 25 to 50		Balance 2					
мз	2		> 10 to 15	Balance 2)					
1	3	> 5 to 50	> 8 to 15	Balance 2)					More
С	1	100							pronounced
	2	Balance	> 0 to 30						oxidierend
F	1						100	Plasma arc cutting	Unreactive
- 1	2			}	1	> 0 to 50	Balance	back shielding	Reducing

Where components not listed are added to one of the groups in this table, the gas mixture is designated as a special gas mixture and carries the perfix S.

mappe1.xls

²⁾ Argon may be replaced by up to 95% helium. The helium content is designated by an additio al identification number:

خلوص این گازها در گروه های گوناگون بوسیله استاندارد EN 439 کنترل و نشان داده شده است ، جدول ۲ . ۲ Table 2

Purity of gases and gas mixtures according to EN 439

		Min. Purity % by Volume	
	Group	minit dilly 70 by voluine	
		99.95	
	R		
		99.99	
::::X:::			
11111111			
11/2000			
	M1	99.70	
	The state of the s		
	M2	99.70	
	246	99.70	
	M3		
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
· · · · · · · · · · · · · · · · · · ·	C	99.70	111 11111111111111111111111111111111111
1			ar ariingaa il aa aa aa
::::::			
	14 1		
••••••		99.50	

SLV-

فرایند جوشکاری MIG غالبا برای جوشکاری آلومینیوم و آلیاژهای آن ، مس و آلیاژهای آن و بعضی مواد دیگر استفاده می گردد.

فرایند جوشکاری MAG عموما ٔ برای اتصال دهی فولادهای نرم ، کم آلیاژ و ضد زنگ به کار می رود. در ایس موارد باید از مخلوط گازهای فعال (ترکیب یک یا چند گاز فعال) که به گاز آرگون برای بهینه کردن فرایند از لحاظ کیفیت و بهره وری اضافه شده است ، استفاده نمود.

آرگون خالص برای جوشکاری MIG فولادها قابل استفاده نیست ، زیرا قوس در این حالت بسیار ناپایدار بوده و به همین منظور باید یک ترکیب اکسید کننده برای پایدار نمودن قوس و برای اطمینان از انتقال روان فلز در حین جوشکاری به آرگون اضافه گردد. این ترکیب اکسید کننده می تواند اکسیژن ، دی اکسید کربن و یا ترکیبی از آنها باشد. مقدار افزودن این گازها و درصد ترکیب آنها بستگی به نوع فولاد و کاربرد آن دارد. بعنوان مثال برای جوشکاری فولادهای ضدزنگ می توان از ترکیب گاز با یک تا چند درصد دی اکسید کربن و اکسیژن استفاده نمود. فولادهای نرم و کم آلیاژی را می توان با ترکیب گاز آرگون و دی اکسید کربن (در ۲۵ در ۱۲ ۵۰ ۲۰ ٪) و یا (۲۵ ۲۵ ٪ – ۴ ٪) جوشکاری کرد.

جوشکاری MAG برای فولادهای نرم و کم آلیاژی با گاز CO2 نیز امکان پذیـر اسـت. CO2 یـک گـاز نسـبتا ٔ ارزان است و در گذشته بصورت گسترده مورد استفاده قرار می گرفته است.

محروه مهندسين بين المللي جوش ايران

شركت كاوش همايش

امروزه ما می دانیم که قیمت گاز یک بخش غیر قابل گذشت از قیمت کل تمام شده بـرای فراینـد جوشـکاری است و خواصی نظیر کیفیت جوش ، سرعت جوش ، میزان ترشحات و قدرت تمیزکنندگی کـه همگـی بـر اثـر نوع گاز تنییر می کنند ، بخش مهمی از اقتصاد در مهندسی جوش را تشکیل می دهد.

در استفاده از فرایند TIG و جوشکاری پلاسما ، متداولترین گاز محافظ ، آرگون است .علت استفاده از ایس گاز نیز تنها در خواص خنثی این گاز برای تمامی مواد می باشد.

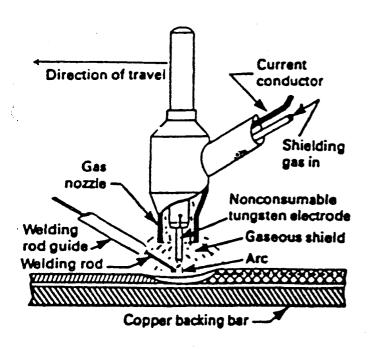
برای افزایش بهره وری و بالا بردن کیفیت جوش ، غالبا گاز هلیم و هیدروژن به آرگون اضافه می شود. آرگون و بویژه هیدروژن ، قدرت هدایت بسیار بالائی برای انتقال حرارت ورودی (HEAT INPUT) به قطعه کار را دارند. برای افزایش سرعت جوشکاری و یا افزایش قدرت نفوذ برای فولادهای ضد زنگ ، گاز هیدروژن با درصد یک تا هفت درصد (Y'' - Y'') و برای آلومینیوم از ۳۰ الی ۷۰ درصد به آرگون اضافه می شوند. میزان و حجم ترکیبات اضافه شونده به ضخامت فلز پایه مرتبط است.

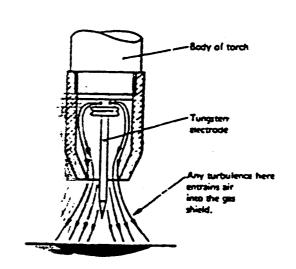
گروه مهندسین بین المللی جوش ایران *ا* ۱۳۷۹

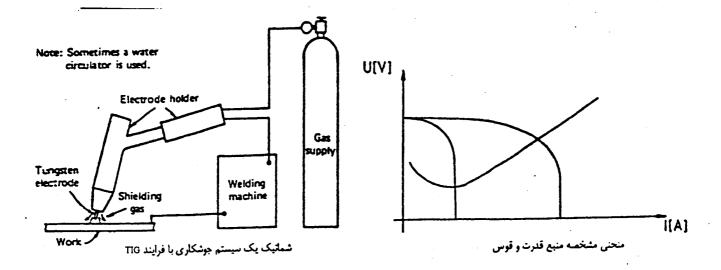
نام های این فرایند:

در اروپا ، فرآیند جوشکاری قمِسی - گتر محفظ و الکترود تنگستن ، TIG در ایالات متحده امریکا به نام ، WIG با شماره ۱۴۳ ، در آلمان با نام WIG با شماره ۱۴۳ ، در آلمان با نام و TIG با شماره ۱۴۳ ، در آلمان با نام و در ایران با نام جوشکاری آرگون هم شهرت دارد.

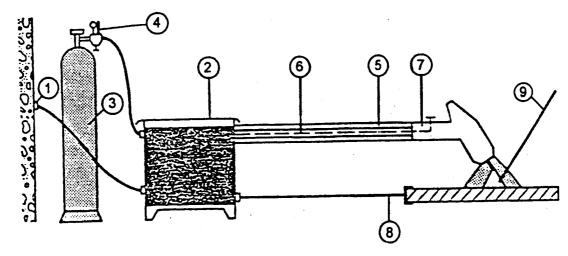
نحوه عملكرد: بصورت دستى (Mazual) و مكاتيزه (Mechanised)


منبع تامین حرارت : قوس (Arc)


نوع محافظت: گاز خنثی


محدوده جریان: ۱۰ تا ۵۰۰ آمیر

نحوه کار: قوس الکتریکی بین انته ی الکترود تنگستن و فلز پایه و در روی خط اتصال (Joint Line) برقرار می گردد. در این فرایند ، الکترود مصرف نمی گردد و قوس بر روی محل اتصال بصورت ثابت نگاه داشته می شود. جریان بوسیله واحد تامین قدرت ز اترژی) تامین می گردد. در صورت نیاز یک فلز پرکننده (معمولا بصورت سیم و با طول یک متر) به تنهای درز اتصال و بر روی حوضچه مـذاب اضافه می گردد. حوضچه مذاب توسط گاز محافظ خنثی که جیگزین هیا می گردد ، محافظت می شود مورد کاربردترین گازهای محافظ مورد استفاده در این فرایند ، گار آرگون (Ar) و گاز هلیم (He) می باشند.


کاربرد: این فرایند برای ایجاد اتصال های با کیفیت بسیار بالا بر روی آلومینیوم ، فولادهای ضد زنگ ، آلیاژهای نیکل – مولیدن (Nilloric) و مس (برای محفظه های شیمیایی) ، ساخت قطعات خاص در موتور و ساختمان هواپیماها و عموم برای جوشکاری قطعات نازک مورد استفاده واقع می شود.

نمای شماتیک یا ماشین جوشکاری با فرایند TIG:

منبع قدرت و دیگر کنترل های جوشکاری :

۱. منبع تامین نیروی اصلی

۲. منبع تامین انرژی و کلیدهای کترل کننده دستگاه

(پمپ ها ، رادیاتور ، تانک سرد کننده و منبع سردکننده با آب)

كاز محافظ:

۳. کیسول گاز

۴. رگولاتور (تنظیم کننده) فشار و میزان خروج گاز

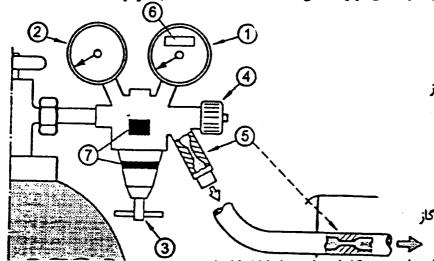
اتصالات لوله اي:

۵. تامین کننده گاز محافظ

ع کابل انتقال جریان جوشکاری

اتبر (تورج) :

۷. تورچ با سوئيچ مخصوص


اتصالات قطعه كار:

۸ کابل برگشتی با گیره

فلز پرکننده:

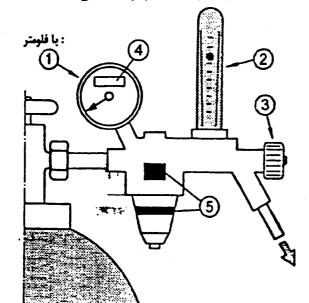
سیم جوشکاری

تنظیم کننده (گیج) فشار خروج گاز و کنترل های مربوط به آن:

۱. مانومتر فشار گاز

۲. نمایش دهنده میزان (LEVEL) گاز

٣. ييج تنظيم كننده فشار


۴. دریچه (VALVE) ایمنی

۵. نازل کاهش دهنده

ع نوع گاز

۷. کد های رنگی مشخص کننده نوع گاز

وجود یک نازل کاهش دهنده گاز (۵) میزان خروج گاز از سطح مقطع کایل گاز را محدود می کند. مشخص نمودن میزان خروج گاز از سطح مقطع کایل گاز را محدود می کند. مشخص نمودن میزان خروج گاز بستگی به میزان فشار دارد. این نازل هم در در بخش کاهش فشار (مانومتر) و هم بر روی کابل منتهی به تورج جوشکاری تعبیه شده است. این پیچ تنظیم کننده فشار همچنین وظیفه کنترل نرخ گاز را بر عهده دارد ، عدد نشان دهنده فشار گاز بر روی مانومتر بر حسب لیتر بر دقیقه می باشد.

۱. مانومتر فشار گاز

۲. روتامتر (اندازه گیر فشار گاز با گلوله معلق)

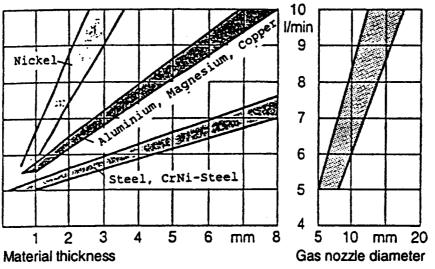
٣. پيچ تنظيم كننده فشار

۲. نوع گاز

۵. کد های رنگی مشخص کننده نوع گاز

كروه مهندسين بين المللي جوش ايران

کاهش فشار گاز بصورت ثابت انجام می گیرد. عددی که را جسم شناور درون روتامتر نشان می دهد، میزان فشار گاز خروجی بر حسب لیتر بر دقیقه می باشد.


مصرف گاز محافظ - نرخ جریان گاز (FLOW RATE) - انتخاب نازل:

میزان مصرف گاز و مقدار نشان دهنده فشار گاز بستگی بسیار زیادی به دو عامل دارد:

الف) ضخامت فلز (ماده) پایه

ب) نوع جنس فلز (ماده) پایه

Argon consumption

اشتباه در محاسبه و استفاده از شکل بالا می تواند منجر به بروز عیب و خطا در:

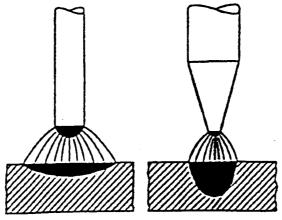
اندازه حوضچه مذاب

- · اندازه منطقه متاثر از حرارت (HAZ)
 - سرعت جوشکاری
- عملکرد صحیح انبر (تورچ) جوشکاری
 - نوع اتصال

مقدار مصرف گاز آرگون بستگی به قطر نازل مورد استفاده دارد و این از طرف دیگر یعنی قطر نازل جوشکاری بر روی دبی گاز خروج تاثیر می گذارد.

روش های شروع قوس :

در اینجا می توان گفت که برای شروع قوس در فرایند جوشکاری قوسی با الکترود تنگستن و با گاز محافظ (Retract Start) ، روش جمع کردن (Retract Start) و روش استفاده از فرکانس بالا (High - Frequency Start).


روش خراشی : عموماً برای جوشکاری دستی مورد استفاده قرار می گیرد. در این روش قطعه کار توسط الکترود خراشیده می شود. خراشیده می شود به محض برقراری قوس ، الکترود تقریبا به اندازه یک هشتم اینچ به عقب کشیده می شود.

این عمل به منظور اجتناب از دخول الکترود در حوضچه مذاب صورت می گیرد. در ابتدا می توان برای روشن کردن قوس از از قطعات بزرگ مس یا قراضه های فولادی استفاده نمود و به محض داغ شدن نوک الکترود، قوس را بر روی قطعه کار اصلی برقرار کرد.

شروع قوس به روش جمع کردن: این روش بیشتر در مورد فرایندهای مکانیزه و در صورت استفاده از برق مستقیم (DC) قابل استفاده است. در این روش، در ابتدا الکترود به طور کامل و در یک لحظه به سطح قطعه کار چسبیده و به محض شروع قوس به عقب کشیده می شود تا قوس به حالت پایدار برسد.

روش شروع قوس با فركانس بالا (HF): این روش هم برای برق متناوب و هم برای برق مستقیم ، هم در روشهای دستی و هم در روشهای مكانیزه ، قابل كاربرد است. وقتی از منبع برق متناوب استفاده می شود ، مدار با فركانس بالا بصورت طبیعی و خود بخود برقرار می شود. یكی ار مزایای این روش آن است كه نیازی به تماس الكترود با قطعه كار وجود ندارد و در نتیجه خطر صدمه دیدن الكترود وجود ندارد. در صورت استفاده از منبع برق متناوب ، در تمام لحظها مدار با فركانس بالا برقرار است ، اما در صورت استفاده از برق مستقیم (DC) ، فقط تا زمانی كه قوس برقرار می شود ، فركانس بالا وجود دارد و پس از آن مدار با فركانس بالا ، قطع می شود .

Broad and flat penetration

Narrow and deep penetration

kind of	int	ensity of cu	rrent
current	too low	too high	right
= (-)	7	V	good for welding with high intensity of current, cladding and TIG - spot welding
~			good for root passes and thin workpieces

میزان نفوذ در صورت استفاده از الکترودهای گوناگون و با مقدار جریان ثابت

Selection guidelines for welding current

CMn and alloyed steels

Plate Joint No. of Diameter of: Current thickness type layers electrode filler rod					
1,0	H	1	1 or 1,6	1,6 or 2,0	3040
2,0	11	1	1,6 or 2,4	1,6 or 2,0	7080
3,0	II	1 or 2	2,4	2,4	7090
4,0	II or V	2	2,4	2,4	70130
5,0	V	3	2,4 or 3,2	2,4	75130
6,0	. V	3	2,4 or 3,2	2,4 or 3,0	75130

<u>Aluminium</u>

AC, welding, position flat, butt weld

Plate thickness	Joint type	No. of layers	Diameter of: electrode	filler rod	Current
1,0	11	1	1,6 or 2,4	2,0	4050
2,0	11	1	1,6 or 2.4	3.0	6080
3,0	11	1	2,4	3,0	110-130
4,0	11	1 or 2	2,4 or 3,2	3,0	120-150
5,0	li or V	1 or 2	3,2	3,0	150-200

Copper

DC, electrode negative, welding position flat, butt weld.

Plate Joint thickness type		No. of layers	Diameter of electrode	Diameter of Current		
1,5	II	1	1,6	2,0	90100	
3,0*)	II	1	3,2	3,0	150-200	
5.0°)	V	2	4,0	4,0	180-300	

^{*)} Pre heat

Note

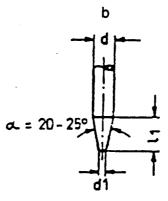
For welding in horizontal and vertical positions, the current is approximately 10 to 20 % lower.

تکنیک کار: تنظیم مقدارجریان صحیح در انجام جوشکاری موفق ، بسیار تعیین کننده است. در این میان شکل هندسی نوک الکترود برای ایجاد دانسیته جریان یکنواخت ، بسیار مهم می باشد. در هر لحظه که مقدار جریان از حد معین آن فراتر رود (Over Loading) ، الکترود شروع به ذوب شدن می کند و قطرات لرزان تنگستن در نوک الکترود شکل می گیرد. در نتیجه قوسی بسیار قوی شکل می گیرد. در اینجا این خطر وجود دارد که این قطرات تشکیل شده به حوضچه مذاب منتقل گردند.

الکترودی که تحت بارهای بسیار کم قرار می گیرد، قوس را در تمام سطح انتهایی خود، نخواهد داشت و قوس ناقص خواهد شد.

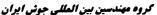
اگر جوشکاری با جریان مستقیم انجام شود ، نوک الکترود مطابق شکل a ، گرد خواهد شد.

در صورت استفاده از جریان متناوب ، نوک الکترود ، کمی پخ خواهد داشت (شکل b). در طبی جوشکاری ، این میزان پخ به شکلی صاف تر و روان تر تبدیل خواهد شد (شکل c).


بعد از پایان جوشکاری و خاموش شدن قوس ، الکترود باید در گاز محافظ خنثی ، خنک گردد. در صورتی که این عمل انجام نشود ، الکترود اکسید شده و به رنگ قهوه ای متمایل به آبی در می آید. الکترود اکسید شده در هنگام جوشکاری موجب ایجاد یک قوس بنفش رنگ می شود.

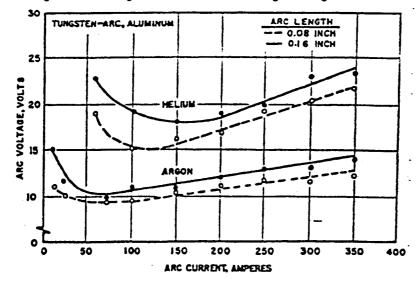
direct current

α=20-25°


d	ı
1.0	2.5
1.6	4.0
2.4	6.0
3.2	8.0
4.0	10.0

alternating current

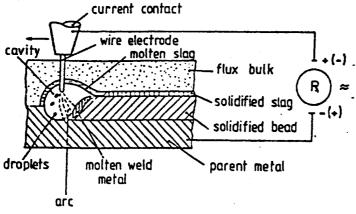
d	d ₁	l ₁
1.0	0.5	1.2
1.6	0.8	2.0
2.4	1.2	3.0
3.2	1.6	4.0
4.0	2.0	5.0



Current carrying capacity of pure thoriated tungsten electrode as a function of diameter

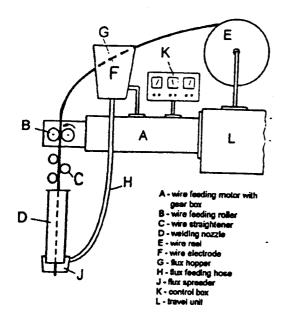
	Type of Typesten Current intensity					
Type of	£ .	<u> </u>	our meanary	τ		
current	electrode	too low		too high		
=	thoristed					
	pure					
?	thoriated					

Configuration of tungsten electrode end during welding with too low correct and too high current intensity



Arc voltage characteristics of argon and helium

تعريف:


در این فرایند ، قوس بصورت غیر قابل رویت بین الکترود ذوب شونده (سیم جوش) و قطعه کار و یـا بیـن دو الكترود ذوب شونده برقرار مي گردد. قوس و منطقه جوشكاري (حوضچـه مـذاب) بوسيله لايـه اي از پـودر مخصوص (FLUX) محافظت می گردد. حوضچه جوش توسط سرباره بوجود آمده از پودر ، از مضرات تماس یافتن با اتمسفر محافظت می گردد. (استاندارد DIN 1919 بخش دوم)

اصول فرایند جوشکاری زیر پودری (SAW):

R = rectifier

تجهیزات مورد استفاده در فرایند جوشکاری زیرپودری:

A : موتور تقديه كننده سيم با گيربكس

B: غلطک تعذیه کننده سیم

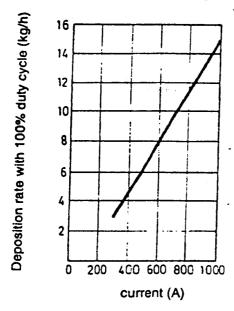
C: صاف كتنده سيم

D: نازل جوشكاري

E: كويل سيم

F: سيم جوش

G : محفظه پودر


H: لوله حمل كننده يودر

J: توزیع کتنده پودر

K: جعبه فرمان

L: واحد حمل كننده سيستم

Deposition rate of submerged arc method

قطر استاندارد سيم جوش بر اساس استاندارد DIN EN 756

8.0 - 6.3 - 6.0 - 5.0 - 4.0 - 3.2 - 3.0 - 2.5 - 2.5 - 2.0 - 1.2 (اندازه ها به میلیمتر می باشد) توجه : برای آشنایی با نحوه آماده سازی قطعه کار و طراحی پخ برای اتصالات مورد استفاده در این فرایند به استاندارد DIN 8551 ، بخش چهارم ، مراجعه فرمایید.

مثال:

متغییرهای جوشکاری بسیار متداول در این فرایند به شرح ذیل می باشد:

قطر سیم جوش: ۴ میلیمتر

میزان جریان : ۶۰۰۰ آمپر

ميزان ولتارُ : ٣٠ ولت

سرعت جوشکاری: ۵۰ سانتی متر بر دقیقه

وظایف پودر جوشکاری:

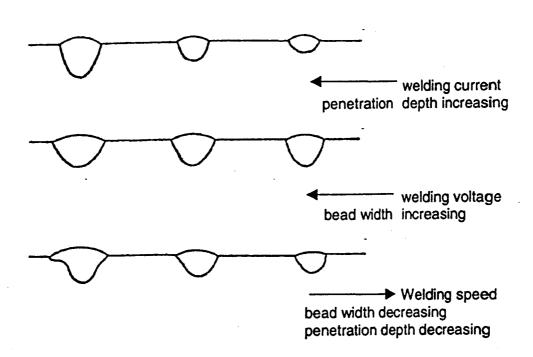
۱. اصلاح و کمک به هدایت الکتریکی در منطقه قوس:

و بنابراین : الف) کمک به شروع قوس محافظ ب) پایدارسازی قوس

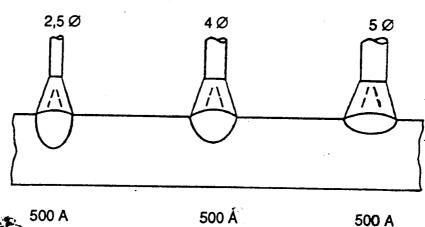
۲. تشکیل سرباره (گل جوش):

که در نتیجه : الف) کمک به خروج حبابها و گازها از منطقه حوضچه مذاب

- ب) محافظت از قطره های انتقال یابنده
 - ج) محافظت از حوضچه مذاب
- د) کمک به ایجاد شکل مناسب پروفیل جوش
- محافظت از سیم جوش در برابر نرخ سرد شدن بالا (در برابر سریع سرد شدن)


٣. تاثيرات متالهرژيكي بر فلز جوش:

بوسیله : الف) واکتش های بین سرباره و فلز پایه ب) اکسید زدایی بوسیله ترکیبات فروسیلیکون و فرو منگنز

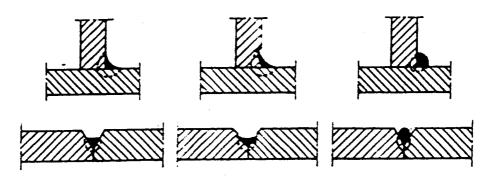

۴. أليارُسازي:

بوسیله : اضافه کردن عناصر الیاژی توسط پور جوش (مانند کروم ، کربن و ...)

تاثیر پارامتر های جوشکاری بر شکل ظاهر جوش:

تاثیر دانسیته جریان بر روی بستر و شکل جوش:

current:


current density:

102,0

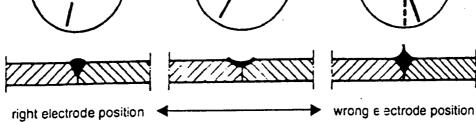
39,8

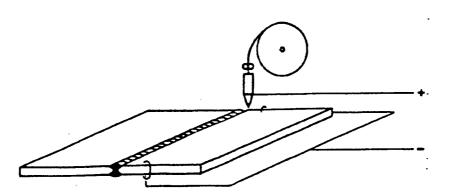
25,5, A/mm²

تاتیر پارامتر های جوشکاری (ادامه) :

a) correct arc voltage

welding of circular seams


b) is tage too high


c) vo tage too low

beat shape depending on arc voltage

جوشکاری درزهای حلقوی (دایروی) :

favourable work piece connection

فطل دوم مشخصات روش جوشکاری WPS

اشنایی با تست و دستورالعمل جوشکاری

مقدمه

هدف از تنظیم یک WPS مشخص و تعیین کردن جزئیات فرایند جوشکاری یک قطعه است. برخی از کارخانه ها برای تولیدات خود گواهی کیفیت نیز تنظیم می کنند تا بوسیله آن شرایط آماده سازی، بررسی و تائید مشخصات بیان شده در روش جوشکاری ، کنترل شود.

براساس نوع سازه ، استانداردهای مختلفی برای طراحی و ساخت سازه در کشورهای مختلف موجود است و تقریباً در تمامی این استانداردها بخشی به جوشکاری و کنترل کیفی اختصاص داده شده است.

به عنوان مثال در آمریکا ، طراحی و ساخت بویلرها، مخازن تحت فشار و نیروگاههای اتمی براساس استانداردهای منتشره از سوی انجمن ASME صورت می گیرد. همچنین برای سازه های فلزی انجمن AWS استانداردهایی را منتشر ساخته است. انجمن API نیز برای مخازن ذخیره فولادی و لوله های انتقال گاز ،کدهایی را معرفی کرده است.

امروزه خواسته های کییفیتی جوش جهت کسب استانداردهای ۱۵۰۱ باید براسس کد ۱۵۰۳-۲۰۰۰ تنظیم گردد. این استاندارد در چهار بخش به ترتیب راهنمای انتخاب واستفاده ، خواسته های کیفیت کامل ، خواسته های کیفیتی ابتدایی جوشکاری را مطرح می سازد. کامل ، خواسته های کیفیتی ابتدایی جوشکاری را مطرح می سازد. معیارهای تعیین کیفیت و کنترل کیفیت جوشکاری برای سازه ها و تجهیزات مختلف متفاوت است. ASME . Sec IX ، برای AWS. D1.1 محازن تحت فشار، استاندارد المسازه های فلوت بوشکاری سازه های فلوت و کنترل کیفیت جوشکاری سازه های فلوت و خطوط لوله گاز می باشد . در کشورهای اروپایی نیز استاندارد استاندارد الاستاندارد الاستاندار

نکته حائز اهمیت آن است که هدف تمامی استانداردهای مذکور تعیین کیفیت مطلوب جوش است و تنها بسته به مسائل طراحی مورد نظر ، متغیرهای اساسی مورد توجه جهت ارائه روش جوشکاری ، تغییر می کند.

مشخصات روش جوشکاری براساس نیازهای سازنده و بنا به تائید مشاور طرح ، تنظیم می گردد. مأخذ مورد استفاده در این دوره استاندارد ASME, Sec IX بوده و به استانداردهای مشابه مانند AWS. DI.1

نحوه تنظیم فرم مشخصات روش جوشکاری (WPS)

۱-۲) مشخصات سربرگ فرم WPS:

در ضمیمه شماره از نمونه آخرین فرم WPS پیشنهادی در استاندارد (QW-482) ASME, Sec IX. نشان داده شده است. همانطور که مشاهده می شود در سربرگ فرم ، مشخصات اولیه یک WPS ذکر می گردد. بسته به شرایط کاری هر شرکت ، این قسمت قابل تغییر است.

موارد توصیه شده در استاندارد ASME عبارتند از :

- ۱) نام شرکت
- ۲) شماره WPS :

این شماره استاندارد خاصی نداشته و بنا به قراردادها و بخشنامه های داخلی هر شرکت تعیین می شود.

- ۳) تاریخ تنظیم WPS
- ۴) شماره گزارش کیفیت جوشکاری تائید کننده (PQR No.)
 - ۵) شماره تجدیدنظر
 - ۶) تاریخ تجدیدنظر
 - ۷) فرآیند یا فرایندهای جوشکاری مورد استفاده
 - ۸) نحوه انجام فرایند جوشکاری

مطابق با آنچه در سـربرگ فـرم WPS دیـده میشود ، اولیـن قـدم در نوشـتن WPS تعییـن فراینـد یـا فرایندهای جوشکاری است. برای این منظور با در نظر گرفتـن پارامترهـای مختلـف مؤثـر و نـیز مزایـا و محدودیت های هر روش جوشکاری بهترین و صحیح ترین فرایند را انتخاب می کنیم.

شرکت کاوش همایش

پارامترهای انتخاب صحیح روش جوشکاری:

۱- اندازه ، ابعاد و طرح اتصال قطعات

۲- جنس مواد پایه

۳- قابلیت دسترسی (فرایند و قطعه کار)

۴- تعداد قطعات

۵- تجهیزات در دسترس

۶- موقعیت جوشکاری

٧- اقتصاد جوش

برای سهولت فرایندهای جوشکاری را با نام اختصاری در سربرگ فرم می نویسیم . اسامی اختصاری برخی فرایندهای جوشکاری در جدول ۱ آمده است.

Symbol	Welding Process	فرایند جوشکاری
SMAW	Shielded Metal Arc Welding	جوشکاری قوس الکترود روپوش دار
GMAW	Gas Metal Arc Welding	جوشکاری قوس فلزی با گاز
GTAW	Gas Tungsten Arc Welding	جوشکاری قوس تنگستنی
FCAW	Flux Cored Arc Welding	جوشکاری قوس با الکترود توپودری
MIG	Metal Inert Gas Welding	جوشکاری قوس- فلز با گاز محافظ خنثی
MAG	Metal Active Gas Welding	جوشکاری قوس- فلز با گاز محافظ فعال
TIG	Tungsten Inert Gas Welding	جوشکاری تنگستنی با گاز محافظ خنثی
PAW	Plasma Arc Welding	جوشکاری قوس پلاسما
OFW	Oxy-Fuel Gas Welding	جوشکاری با سوخت گازی
ESW	Electroslag Welding	جوشکاری سرباره الکتریکی
EGW	Electro-Gas Welding	جوشکاری گاز الکتریکی
EBW	Electron Beam Welding	جوشکاری پرتو الکترونی
SAW	Submerged Arc Welding	جوشکاری قوس-زیرپودری

جدول ۱- اسامی اختصاری فرایند های جوشکاری .

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

پس از تعیین روش جوشکاری ، باید نحوه انجام روش جوشکاری نیز مشخص می شود. روش جوشکاری می تواند بصورت دستی Manual ، اتوماتیک Automatic ، نیمه اتوماتیک Semi-Automatic یا ماشینی Machine باشد. به عنوان مثال جوشکاری قوسی با الکترود روپوش دار به علت استفاده از الکترودهایی با طول محدود و فرایندی دستی تلقی می شود.

: Joints (QW-402) طرح اتصال (T-۲

مشخصات طرح اتصالی که روش جوشکاری برای آن نوشته می شود ، در این قسمت از فرم WPS نشان داده می شود. استاندارد مربوط به طرح اتصال ، QW-402 است. در صورت تمایل و نیاز فرایند ، پخ سازی مورد نظر نیز قابل ذکر است. معمولاً آماده سازی شیار یا پخ جوشکاری با یکی از روشهای:برش اکسیژن ، استفاده از الکترودهای کربنی ، برش قوس پلاسما یا روشهای مختلف ماشینکاری و سنگ زنبی صورت می گیرد. تمیزکاری پخ جوش باعث بهبود جوش می گردد.

در این قسمت موارد پیشنهادی برای ارائه عبارتند از:

- ۱) طرح شیار یا پخ جوشکاری
 - ۲) پشت بند
 - ۳) جنس مواد پشت بند

(Groove Design) طرح شیار یا پخ

در این قسمت با توجه به جدول $\frac{Y}{2}$ ، نام یا نام اختصاری شیار و طرح اتصال را ذکر می کنیم. لازم به ذکر $\frac{F}{2}$ است که عنوان طرح اتصال بصورت کلی ($\frac{G}{2}$ $\frac{G}{2}$ $\frac{G}{2}$ $\frac{G}{2}$) نیز امکان پذیر است.

بهتر است شکل طرح اتصال ، علامتهای اختصاری جوشها ، توضیحات نوشتاری که موقعیت قطعات را نشان می دهد و در صورت امکان جزئیات اتصال نیز ارائه شود.

در ضمیمه ۳ مثالهای گوناگونی از طرحهای اتصال همراه با مشخصاتی از قبیل نام اختصاری طرح جوش ، ضخامت فلزات پایه ، وضعیت جوشکاری مطلوب و ابعاد مورد نظر با توجه به فرایند جوشکاری و ضخامت ، مطابق با استاندارد AWS . D1.1 ارائه شده است.

كروه مهندسين بين العللى جوش ايران

شرکت کاوش همایش

سب روس بوساری و برارس بنتول بیعی

	· · · · · · · · · · · · · · · · · · ·	
Symbol	Joint Type	نوع اتصال
В	Butt Joint	اتصال سر به سر
С	Corner Joint	اتصال گوشه ای
T	T-Joint	اتصال به شکل T
BC	Butt or Corner Joint	اتصال سر به سر یا گوشه ای
TC	T-Joint or Corner Joint	اتصال گوشه ای یا اتصال به شکل T
BTC ·	Butt , T- or Corner Joint	اتصال سر به سر،گوشه ای یا اتصال به شکل T
Symbol	Base Metal Thickness & Penetration	ميزان نفوذ جوش وضخامت فلز پايه
L	Limited Thickness, Compelet Joint Penetration	ضخامت محدود ، نفوذ کامل جوش
U	Unlimited Thickness . Compelet Joint Penetration	ضخامت نامحدود ، نفوذ کامل جوش
P	Partial Joint Penetration	نفوذ ناقص جوش
Symbol	Weld Type	نوع جوشکاری
1	Square-Groove	شیار مربعی
2	Single-V-Groove	شیار -۷-یک طرفه
3	Double-V-Groove	شيار -V-دو طرفه
4	Single-Bevel-Groove	شیلر نیم جناغی یک طرفه
5	Double-Bevel-Groove	شیلر نیم جناغی دو طرفه
6	Single-U-Groove	شيار -U-يک طرفه
7	Double-U-Groove	شيار -U-دو طرفه
8	Single-J-Groove	شیار -J-یک طرفه
9	Double-J-Groove	شيار -آ-دو طرفه
10	Flare-Bevel-Groove	شیار نیم جناغی لبه گرد

جدول۲- مشخصات طرح های اتصال .

گروه مهندسین بین المللی جوش ایران

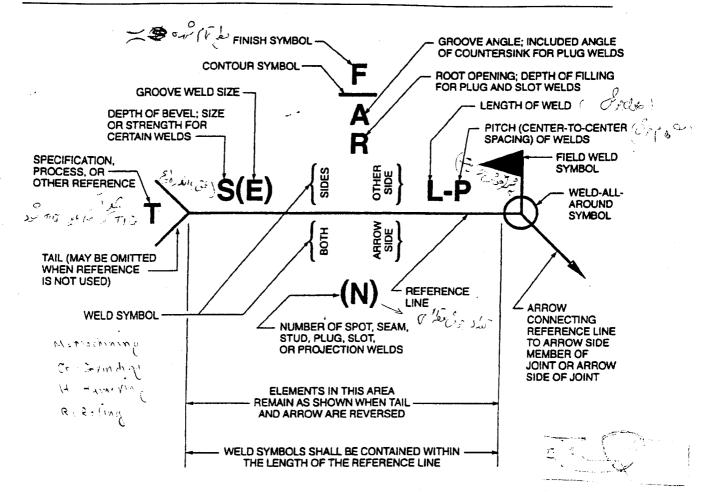
شرکت کاوش همایش

نکته قابل توجه در اشکال و طرحهای ضمیمه $\frac{\pi}{2}$ ، علائم اختصاری جوشها است. استفاده از این علائم در نقشه ها متداول است و لذا شناخت و اطلاع از این علائم موجب تسهیل و تسریع کار می گردد. در جدول π علائم گوناگون مورد استفاده در جوشکاری نشان داده شده است.

	GROOVE								
SQUARE	SCARF	٧	BEVEL	U	J	FLARE-V	FLARE-BEVEL		
11			K	<u> </u>	<u> </u>	-7 <i>C</i> -	1 <i>C</i> -		
FILLET	PLUG OR SLOT	STUD	SPOT OR PROJECTION	SEAM	BACK OR BACKING	SURFACING	EDGE		
(a) 5/1,20 		⊗	0 0	\$ \$ \$	- -	₩.	-M-		

جدول ٣- علامتهاي اختصاري طرح اتصال جوشهاي مختلف.

معمولاً برای نشان دادن علائم جوش از یک پیکان استفاده می شود که ابعاد و مشخصات کـامل پـخ بـر روی آن ذکر می گردد. نحوه تنظیم و ترسیم پیکان در شکل ۱ نشان داده شده است. مثالـهایی از نحـوه علامت گذاری جوش در شکل ۲ دیده می شود.


minimal bead

(Backing) پشت بند (Y-Y-Y

همانطور که در شکل های ضمیمه ۳ دیده می شود. ،بنا به ملاحظات طراحی و به منظور جلوگیری از اکسید شدن مذاب ریشه شیار جوش ، عدم ریزش مذاب از پشت شیار ، افزایش یا کاهش سرعت انجماد می اطمینان از خالی نماندن و یا ایجاد سوختگی کناره جوش در قسمت پشتی جوش و ... از تسمه های فلزی ، غیرفلزی ، جریان گاز یا فلاکس (پودر جوش) به عنوان پشت بند استفاده می شود. در این قسمت استفاده یا عدم استفاده از پشت بند ذکر می گردد.

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

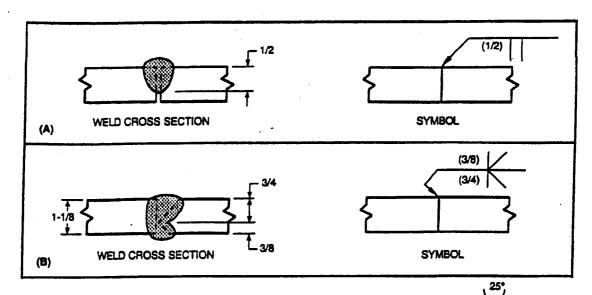
شکل ۱- موقعیت استاندارد پارامترهای لازم برای نشان دادن علامت جوش.

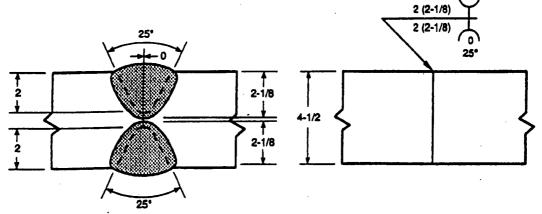
(Backing Material < Type>) جنس مواد پشت بند (۲-۲-۳

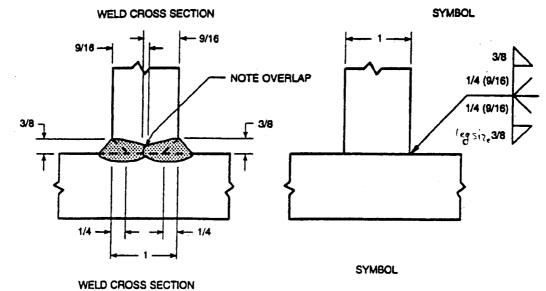
در صورت استفاده از پشت بند (بنا به صلاحدید طراح) جنس ونوع پشت بند در این قسمت درج می شود. موادی که عمدتاً به عنوان پشت بند بکار می روند عبارتند از :

الف) تسمه های فولاد کربنی ساده

ب) ورقهای مسی


ج) فلاكس (پودر جوش)


د) جریان گازهای محافظ : $C0_2$, Ar


لازم به ذکر است که در جوشهای گلویی یا سپری (Fillet) فلز پایه خود به عنوان پشت عمل می کنید. هم چنین جوشهای شیاری دو طرفه (Double – Groove) به صورت جوشهای همراه با پشت بند در نظر گرفته می شوند (QW-402.4) ، و می توان در این حالت و در شرایطی که پس از جوشکاری طرح اتصال

شرکت کاوش همایش

شیاری یک طرفه ، پاس ریشه سنگ زده شده و برداشته می شود (Back Chipping) و جوشکاری پشت درز اتصال مجدداً انجام می گیرد ، فلز جوش را به عنوان پشت بند در نظر گرفت.

شكل ٢- مثالهايي از نحوه نشان دادن علائم جوش.

شرکت کاوش همایش

: Base Metal (QW-403) فلزات پایه (T-۳

ذکر نوع و ترکیب شیمیایی فلزات پایه ای که جوشکاری بر روی آنها انجام می شود ، از جمله مهمترین و الزامی ترین موارد WPS است. نوع فلز پایه (شماره استاندارد) ، ترکیب شیمیایی و عملیات حرارتی انجام شده یا لازمه برروی فلز پایه (قبل از جوشکاری) ، در انتخاب مشخصات فرایند جوشکاری مانند پیشگرم ، عملیات حرارتی پس از جوشکاری ، انتخاب االکترود و تکنیک کار دخیال است. استاندارد مربوط به فلز پایه QW-403 می باشد.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از:

۱- عدد مشخصهٔ P No.) P هم چنین عدد گروه (Group No.) است عدد گروه (Group No.) می است سیمیایی ۲- شماره استاندارد یا ترکیب شیمیایی

٣- محدودهٔ ضخامت فلز پایه و محدودهٔ قطر لوله

۴- دیگر موارد.

(P No.) P عدد مشخصه (۲-۳-۱

برای کاهش تعداد PQR . WPS های مورد نیاز و استفاده ، فلزات پایه تحت عدد مشخصه P تقسیم بندی شده اند. ترکیب شیمیایی آلیاژ ، جوش پذیری و خواص مکانیکی ، اساس این تقسیم بندی است. البته در صورتی که تست ضربه برای آزمایش کیفیت فولاد ضروری باشد ، در هـر عـدد مشخصهٔ P تقسیم بندی جزئی تری نیز صورت گرفته و فولادهای تحت هر عدد مشخصهٔ P به گروههای کوچکتری تقسیم می شوند (.Group No) . بـا اسـتناد بـه اعـداد مشخصهٔ P و .Group No مـی تـوان در بـاره قـابلیت جایگزینی دو آلیاژ از نظر خواص متالورژیکی و عملیات حرارتی پس از جوشکاری اظهارنظر کـرد. مسـلمأ باید مسائل طراحی را نیز در این جایگزینی مدنظر قرار داد.

در جدول ۴ اعداد مشخصهٔ P برای آلیاژهای مختلف براساس کد مشخص شده است.

شرکت کاوش همایش

P-No.	ASME , Sec. IX کد مربوطه در	نوع آلياژ
1-11	QW/QB-422	فولادها
21-25	QW/QB-422	آلومینیوم وآلیاژهای Al
31-35	QW/QB-422	مس وألياژهاى Cu
11-47	QW/QB-422	نیکل وآلیاژهای Ni
51-53	QW/QB-422	تيتانيوم وآلياژهاي Ti
1-62	QW/QB-422	زيركنيوم وآلياژهاى Zr

جدول۴- کد های ASME مربوط به P-No. آلیاژهای مختلف.

در صورتیکه آلیاژی در جداول QW/QB-422 موجود نباشد به جای عدد مشخصهٔ P، نوع، ترکیب شیمیایی و یا خصوصیات مکانیکی آلیاژ مورد نظر باید در WPS ذکر شود.

در ضمیمه ۴ بخشی از QW/QB-422 ارائه شده است.

(Specification type & grade / Chem. Analysis) شماره استاندارد یا ترکیب شیمیایی (۲-۳-۲

در این بخش ، شماره استاندارد و فلزات پایه براساس استانداردهای مرتبط ذکر می گردد. کلیه آلیاژهای پذیرفته شده توسط انجمن ASME . Sec II . Part A.B در کد ASME فکر و مشخصات آنها درج گردیده است. در صورتیکه فلزات پایه ، شماره استاندارد مشخصی نداشته باشند، باید ترکیب شیمیایی و خواص مکانیکی فلزات پایه را ذکر کرد.

۳-۳-۲) محدوده ضخامت فلز پایه و محدوده قطر لوله

(Thickness Range: Base Metal / Pipe Dia. Range)

ضخامت فلزات پایه در مقطع جوشکاری در این قسمت از فرم نوشته می شود. اگر اتصال شیاری (Groove) باشد ، ضخامت ها در قسمت Groove و اگر اتصال گلویی یا سپری (Fillet) باشد، ضخامت ها در قسمت Fillet درج می گردد. در صورتیکه قطعه مورد جوشکاری لوله باشد علاوه بر ذکر ضخامت

شرکت کاوش همایش

المراجع والمستحدد والمراجع المراجع المراجع

فلزات پایه لازمست تا قطر لوله نیز در WPS نوشته شود. معملولاً قطر خارجی لوله را با O.D. و قطر داخلی لوله را با I.D. نشان می دهند.

۲-۳-۴) دیگر موارد (Other)

در این قسمت نکات مهم دیگری که مربوط به فلزات پایه باشد درج می گردد.

۲-۴) فلزات پر کننده (W-404 (QW-404) فلزات پر

اصولاً در اکثر فرایندهای جوشکاری برای ایجاد اتصال بین فلزات پایه ، به یک پل واسط فلزی نیاز داریم. فلزات مورد استفاده برای این منظور به عنوان فلزات پر کننده شناخته می شوند. با در نظر گرفتن فرایند جوشکاری و پارامترهای مختلف مؤثر ، صحیح ترین فلز پر کننده را انتخاب می کنیم.

پارامترهای انتخاب صحیح فلز پر کننده:

- الف) فرایند جوشکاری
- ب) ترکیب شیمیایی فلز پایه
 - ج) وضعیت جوشکاری
 - د) شرایط کاربردی
- ه) میزان نفوذ جوش (عمق نفوذ)
 - و) كيفيت محل جوش
 - ز) هزینه جوش
 - ح) مهارت جوشکار

ضمیمه <u>۵</u> برای انتخاب الکترود در حالتی که شباهت بین فلزات پایه و پرکننده باشد ، قابل استفاده است. در این جدول سیم جوش و الکترود سازگار با فلز پایه برای فرایندهای مختلف جوشکاری تحت استاندارد آمریکایی ذکر شده است. به هنگام ارائه مشخصات روش جوشکاری توجه به نکات زیر در مورد فلزات برکننده مفید است :

شرکت کاوش همایش

الف) در روش جوشکاری با الکترود دستی ، بیشترین اندازه جوش گلویسی (Fillet) با یک پاس 6.4 میلی متر و برای جوشهای شیاری (Groove) نیز 6.4 میلی مستر است که با استفاده از الکترود کیم هیدروژن E70XX بدست می آید.

- ب) در روش جوشکاری زیر پودری ، بیشترین اندازه جوش گلویی یا شیاری قابل اجرا در یک پاس با الکترود 8 ، F7XX EXXX الکترود
- ج) در جوشکاری های قوس فلزی با محافظت گاز ، بیشترین اندازه جوش گلویی یا شیاری در یک پاس با الکترود ER70S-X ، 8 میلی متر است.
- د) در جوشکاری با الکترود توپودری ، بیشترین اندازه جوش گلویی یا شیاری در یک پاس با الکـترود 8 ، E7XT-X میلی متر است.
 - ه) الكترودها بايد قبل از مصرف خشك شوند. روكش تمام كلاسهاى الكترود تقريباً كم هيدروژن است و به منظور عدم جذب هيدروژن بايد كاملاً عايق بندى شوند. در صورت باز شدن روكش عايق بسـته هـاى الكترود ، الكترودها بايد قبل از مصرف خشك شوند.

استاندارد مربوط به فلز پر کننده 404-QW می باشد.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از :

- ۱) عدد SFA
- ۲) شماره AWS (کلاس و طبقه بندی فلز پر کننده)
 - ۳) عدد مشخصهٔ F
 - ۴) عدد مشخصهٔ A
 - ۵) اندازهٔ فلز پرکننده
 - ۶) محدودهٔ ضخامت فلز جوش
 - ۷) کلاس و طبقهٔ فلاکس (پودر جوش)
 - ۸) لایی مصرف شدنی
 - ۹) دیگر موارد

شرکت کاوش همایش

(SFA No.) SFA عدد (۲-۴-۱

در استاندارد ASME . Sec II . Part C فلزات پر کننده در گروههای مختلفی طبقه بندی وارائه شده اند . طبقه بندی فلزات پر کننده بر اساس فرایند جوشکاری و ترکیب شیمیایی صورت گرفته است . در جدول همارهٔ مشخصه گروههای مختلف فلزات پرکننده ارائه شده است .

(AWS Class) AWS شماره (۲-۴-۲

در استانداردهای مختلف، روشهای متفاوتی برای نام گذاری الکترودها و فلزات پرکننده وجود دارد. در فرم WPS که بر اساس استاندارد ASME . Sec IX ارائیه شده ، نام الکترودها براساس نام گذاری استاندارد ASME . Sec II . Part C نیز استفاده شده است.

به عنوان مثال ، برای الکترودهای فولاد کربنی روپوش دار که در SFA-5.1 ذکر شده اند ، فرم کلی نام الکترودها به صورت EXXXX می باشد. حرف E نشان دهندهٔ و علامت الکتروداست. دو عدد بعد از حرف E نشان دهندهٔ استحکام کششی فلز جوش بر مبنای KSi (کسیلو پوند بر اینچ مربع) است . رقم سوم نشان دهندهٔ وضعیت جوشکاری و رقم چهلارم نشان دهندهٔ کلاس روپوش الکترود، نوع جریان الکتریکی و سایر خصوصیات پوشش می باشد. جداول $\frac{8}{2}$ و $\frac{4}{2}$ نحوهٔ شماره گذاری الکترودها را نشان میدهند .

(F No.) F عدد مشخصة (۲-۴-۳

عدد مشخصهٔ F در حقیقت یک تقسیم بندی برای فلزات پرکننده (الکترودها و سیم جوشها) است. معدد مشخصهٔ F در حقیقت یک تقسیم بندی PQR , WPS های لازم و مورد استفاده خواهد شد. جدول F استفاده از این عدد نیز باعث کاهش تعداد F و PQR , WPS های لازم و مورد استفاده خواهد شد. جدول F دیده مختلف نشان می دهد. استاندارد مربوط به عدد مشخصه F و PW-432 می باشد. در ضمیمه F تقسیم بندی عدد مشخصه دیده می شود.

شركت كاوش همايش

شماره نوع فلز پر کننده مشخصه SFA-5.1 مشخصات الکترودهای فولاد کربنی برای جوشکاری قوس الکترود روپوش دار MAY مشخصات سیم جوش فولاد کربنی و کم آلیاژی برای جوشکاری با سوخت گاز (اَنْسَ) رَبَیْلِمَ) SFA-5.2 SFA-5.3 مشخصات الکترودهای ألومینیومی و ألیاژهای آن برای جوشکاری قوس الکترود روپوش دار SFA-5.4 مشخصات الكترودهاي فولاد زنگ نزن براي جوشكاري قوس الكترود روپوش دار مشخصات الكترودهاى فولاد كم آلياژى براى جوشكارى قوس الكترود روپوش دار SFA-5.5 SFA-5.6 مشخصات الکترودهای روپوش دار مسی و آلیاژهای مس برای جوشکاری قوسی SFA-5.7 مشخصات الکترود و سیم جوشهای بدون پوشش مسی و آلیاژهای مس SFA-5.8 مشخصات فلزات پرکننده برای لحیم کاری سخت و لحیم جوشکاری SFA-5.9 SFA-5.10 مشخصات الکترود و سیم جوشهای بدون پوشش الومینیومی و الیاژهای آن SFA-5.11 مشخصات الکترودهای نیکلی و آلیاژهای آن برای جوشکاری قوس الکترود روپوش دار مشخصات الکترودهای تنگستنی و آلیاژهای آن برای جوشکاری و برشکاری قوسی SFA-5.12 SFA-5.13 مشخصات الکترود و سیم جوشهای جوش روکش کاری (Solid Surfacing) SFA-5.14 مشخصات الكترود و سيم جوشهاي بدون پوشش نيكلي و ألياژهاي أن مشخصات الکترود و سیم جوشها برای جوشکاری چدن SFA-5.15 SFA-5.16 مشخصات الكترود و سيم جوشهاى تيتانيومي و آلياژهاى آن مشخصات الکترود و فلاکس های فولاد کربنی برای جوشکاری قوس-زیرپودری SFA-5.17 SFA-5.18 مشخصات الکترود و سیم جوشهای فولاد کربنی برای جوشکاری قوس فلزی با گاز شرک است SFA-5.20 مشخصات الکترودهای فولاد کربنی برای جوشکاری قوس با الکترود توپودری SFA-5.21 مشخصات الکترود و سیم جوشهای جوش روکش کاری مرکب (Composite Surfacing) SFA-5.22 مشخصات الکترودهای فولاد زنگ نزن برای جوشکاری قوس با الکترود تویودری و سیم جوشهای فولاد زنگ نزن برای جوشکاری قوس تنگستنی SFA-5.23 مشخصات الکترود و فلاکس های فولاد کم آلیاژی برای جوشکاری قوس-زیرپودری SFA-5.24 مشخصات الكترود و سيم جوشهاي زيركنيومي و ألياژهاي أن SFA-5.25 مشخصات الكترود و فلاكس هاى فولاد كربني وكم أليازي براى جوشكاري سرباره الكتريكي SFA-5.26 مشخصات الكترودهاي فولاد كربني وكم أليازي براي جوشكاري گاز الكتريكي مشخصات الکترود و سیم جوشهای فولاد کم آلیاژی برای جوشکاری قوس فلزی با گاز SFA-5.28 مشخصات الکترودهای فولاد کم آلیاژی برای جوشکاری قوس با الکترود توپودری SFA-5.29 SFA-5.30 مشخصات لایی های مصرف شدنی SFA-5.31 مشخصات فلاكس براى لحيم كارى سخت ولحيم جوشكارى

جدول۵- شماره مشخصات گروههای مختلف فلزات پر کننده (SFA No.) .

شركت كاوش همايش

وضعیت های جوشکاری	رقم سوم
جوشکاری در چهار وضعیت تخت ، افقی ، عمودی و سربالا امکان پذیر است .	1
جوشکاری در دو وضعیت تخت و افقی امکان پذیر است .	2
جوشکاری فقط در وضعیت تخت امکان پذیر است	3

جدول 9- وضعیت های جوشکاری متناسب با رقم سوم نام گذاری الکترودهای فولاد کربنی(SFA-5.1)

نوع جريان الكتريكي	پوشش الكترود	رقم چهارم
جريان مستقيم با قطب معكوس (الف) – جريان	پر سلولز ، سدیم (الف) - پر اکسید آهن (ب)	0
متناوب یا مستقیم با قطب معکوس (ب)		
جریان متناوب یا مستقیم با قطب معکوس	پر سلولز ، پتاسیم	1
جریان متناوب یا مستقیم با قطب مستقیم	پر تیتان، سدیم	2
جریان متناوب یا مستقیم	پر تیتان ، پتاسیم	3
جریان متناوب یا مستقیم	پودر آهن ، تيتان	4
جریان مستقیم با قطب معکوس	کم هیدروژن ، سدیم	5
جریان متناوب یا مستقیم با قطب معکوس	کم هیدروژن ، پتاسیم	6
جریان متناوب یا مستقیم	پر اکسید آهن ، پودر آهن	7
جریان متناوب یا مستقیم با قطب معکوس	کم هیدروژن ، پتاسیم ، پودر آهن	8
جریان متناوب یا مستقیم	اکسید آهن ، تیتان ، پتاسیم	9

جدول ۷- پوشش ها و جریانهای الکتریکی متناسب با رقم چهارم نام گذاری الکترودهای فولاد کربنی . (SFA-5.1)

شرکت کاوش همایش

F-No.	کد مربوطه در ASME , Sec. IX	نوع الياژ سيم جوش
1-6	QW-432	آلياژهاي فولادي
21-25	QW-432	ألومينيوم وألياژهاي Al
31-37	QW-432	مس وألياژهاي Cu
41-45	QW-432	نیکل وآلیاژهای Ni
51-55	QW-432	تيتانيوم وألياژهاي Ti
61	QW-432	زیر کنیوم والیاژهای Zr
71-72	QW-432	

جدول ٨- عدد مشخصه F براي آلياژهاي مختلف.

(A No.) A عدد مشخصة (۲-۴-۴

عدد مشخصهٔ A فقط در مورد آلیاژهای آهنی بکار می رود. عدد مشخصهٔ A مربوط به آنالیز فلز جـوش می باشد. براساس کد 5– 404-QW ابتدا آنالیز جوش در هر فرایند به روش زیر محاسبه شـده و سـپس براساس جدول $\frac{9}{2}$ ($\frac{242-442}{2}$) ، عدد مشخصه A تعیین و در فرم $\frac{9}{2}$ نوشته می شود.

الف) برای روش های جوشکاری PAW ، GTAW ، SMAW :

۱- آزمایش برای تشخیص آنالیز جوش انجام شود.

۲- براساس مدرک کیفیت جوش سازنده فلز پرکننده ، آنالیز ارائه شده پذیرفته می شود.
 در صورت انجام آزمایش ، نمونه باید مشابه آزمایش آنالیز استاندارد سیم جوش باشد.

ب) برای روش های جوشکاری ESW . GMAW :

۱-از مشخصات ارائه شده توسط سازنده استفاده می شود.

۲- با شرایطی مشابه استاندارد ، نمونه آنالیز تهیه می شود.

در هر صورت گاز محافظ باید گاز مورد استفاده در فرایند باشد.

(

شرکت کاوش همایش

ج) برای روش جوشکاری SAW:

- ۱- از مشخصات سازنده تحت شرايط استفاده از فلاكس مشابه فرايند اجرائي ، استفاده مي شود.
 - ۲- تحت شرایط کاری نمونه آنالیز تهیه می شود.

(Size of filler metals) اندازه فلز پرکننده (۲–۴–۵)

انتخاب مناسب اندازه فلز پر کننده از لحاظ اقتصادی و عملیات جوشکاری حائز اهمیت است. در انتخاب اندازه الکترود موارد زیر باید مورد توجه قرار بگیرد:

- الف) طرح اتصال
- ب) ضخامت لایه های جوشکاری
 - ج) وضعیت جوشکاری
- د) حرارت داده شده مجاز (Heat input)
 - ه) مهارت جوشکار

قاعده کلی آن است که هرگز نباید از الکترودی که اندازه آن بزرگتر از ضخامت قطعه کار است ، استفاده کرد. الکترود کلفت برای جوشکاری در وضعیت عمودی یا قائم و بالاسری یا سقفی مناسب نیست ، زیـرا کنترل حوضچه جوش حجیم در این شرایط مشکل است. در مورد جوشکاری ورقهای ضخیم با لبه های آماده شده بصورت ۷ یا ۲ اولین پاس جوشکاری با الکترود نازک و پاس های بعـدی با الکترودهای کلفت تر انجام می شود.

تعداد لایه ها یا پاس های لازم برای پر کردن درز جوش عمدتاً به : طرح اتصال ، اندازه الکترود ، ضخامت فلز پایه ، وضعیت جوشکاری و مهارت جوشکار بستگی دارد.

اندازه مناسب فلز پرکننده برای جوشهای مختلف را می توان بصورت زیر بیان کرد :

۱- برای جوش لوله یا اتصالاتی که احتیاج به ذوب کافی در ریشه جوش دارد و امکان جوشکاری از پشت جوش نیست ، حداکثر قطر الکترود برای پاس اول 3.25 میلی متر پیشنهاد می شود. برای جوشکاری پاس های بعدی از الکترودهای به قطر 5.0 , 4.0 میلی متر استفاده می شود. لازم به ذکسر

 \hat{F}_{a}

گروه مهندسین بین المللی	أشنايي با تست و	شركت كاوش
جوش ایران	دستورالعمل جوشكارى	همایش

-		Analysis, %[Note 1]						
A-No.	Types of Weld Deposit		Cr	Mo	Ni	Mn	Si	
1	Mild Steel	0.20		•••		1.60	1.00	
2	Carbon-Molybdenum	0.15	0.5	0.4-0.65	•••	1.60	1.00	
3	Chrome (0.4% to 2%)-Molybdenum	0.15	0.4-2.00	0.4-0.65	•••	1.60	1.00	
4	Chrome (2% to 6%)-Molybdenum	0.15	2.00-6.00	0.4-1.50	•••	1.60	2.00	
5	Chrome (6% to 10.5%)-Molybdenum	0.15	6.00-10.5	0.4-1.50	•••	1.20	2.00	
6	Chrome-Martensitic	0.15	11.0-15.0	0.70	•••	2.00	1.00	
7	Chrome-Ferritic	0.15	11.0-30.0	1.00	•••	1.00	3.00	
8	Chromium-Nickel	0.15	14.5-30.0	4.00	7.50-15.0	2.50	1.00	
9	Chromium-Nickel	0.30	19.0-30.0	6.00	15.0-37.0	2.50	1.00	
10	Nickel to 4%	0.15		0.55	0.8-4.00	1.70	1.00	
11	Manganese-Molybdenum	0.17	•••	0.25-0.75	0.85	1.25-2.25	1.00	
12	Nickel-Chrome-Molybdenum	0.15	1.5	0.25-0.80	1.25-2.80	0.75-2.25	1.00	

NOTE: (1) Single values shown above are maximum.

جدول ۹-آنالیزجوش و عدد مشخصه A برای آلیاژهای فولادی .

شرکت کاوش همایش

است ، در لوله های با قطر کم پاس اول با الکترود 2.5 میلی متر جوشکاری شده و پاسهای بعدی را با الکترودهای 3.25 , 4.0 میلی متر جوش می دهند.

۲- در جوشکاری اتصالات ۷ شکل یا جناغی یک طرفه که دارای تسمه ای در پشت اتصال می باشند در حالت تخت می توان برای پاس اول از الکترود به قطر 4.0 یا 5.0 میلی منتر و برای پاس های بعدی از الکترود های بزرگتر استفاده کرد.

۳- برای جوشهای گلویی در حالت تخت و سر به سرغیر تخت ، حداکثر قطر الکترود مصرفی 5.0 میلی متر است. اغلب پاس اول را با الکترودهایی به قطر 3.25 یا 4.0 میلی متر جوش می دهند. در جوشهای گلویی با پای جوش کمتر از 10 میلی متر استفاده از الکترود 3.25 . 4.0 میلی متر پیشنهاد می گردد.

(Deposited Weld Metal Thickness Range) محدودهٔ ضخامت فلز جوش (۲-۴-۶

در این قسمت از WPS محدوده ضخامت فلز جوش رسوب داده شده درج می شود که تغییر در مقدار آن براساس کد QW-451 تعریف می شود.

(Electrode - Flux (Calss)) (پودر جوش) کلاس فلاکس (پودر جوش)

هر گونه مشخصات و استانداردهای مربوط به فلاکس های جوشکاری زیـر پـودری مطابق بـا 5.17-SFA برای الکترود و فلاکس های فولاد کم آلیـاژ در این قسمت درج می گردد.

(Consumable insert) لایی مصرف شدنی ($\Upsilon-F-\Lambda$

گاهی به منظور حفظ مشخصات طرح اتصال از لایی های مصرف شدنی استفاده می شود. مشخصات این لایی های مصرف شدنی در مواردی که آنالیز ASME, Sec II . Part C . SFA-5.30 ذکر شده است. در مواردی که آنالیز

آشنایی با تست و دستورالعمل جوشکاری

شركت كاوش همايش

و مشخصات لایی براساس SFA 5.30 است ، No. ، نیز باید براساس 432-QW بـا سـیم جـوش مصرفـی هماهنگ باشد.

۲-۴-۹) دیگر موارد (Other)

نام تجاری ، کد سازنده و یا دیگر مشخصات فلز پرکننده و لایی مصرف شدنی در این قسمت ذکـــر می گردد.

۵−۷) وضعیت جوشکاری (W-405) وضعیت جوشکاری

اصولاً جوشکاری در چهار وضعیت کلی قابل انجام است:

۱) تخت (۱

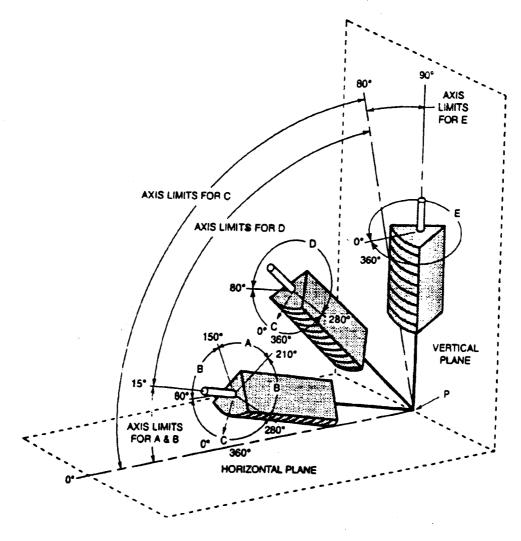
۲) افقی Horizontal

۳) عمودی Vertical

۴) بالا سرى Overhead

استاندارد مربوط به وضعیت جوشکاری 405-QW می باشد. در استاندارد ASME . Sec IX در کد و QW-461 وضعیت های مختلف جوشکاری ذکر شده است (ضمیمه \underline{Y}) . شکل های \underline{T} و جهات و زوایای چهار وضعیت جوشکاری را نشان می دهد.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از:


۱- وضعیت شیاری یا گلویی

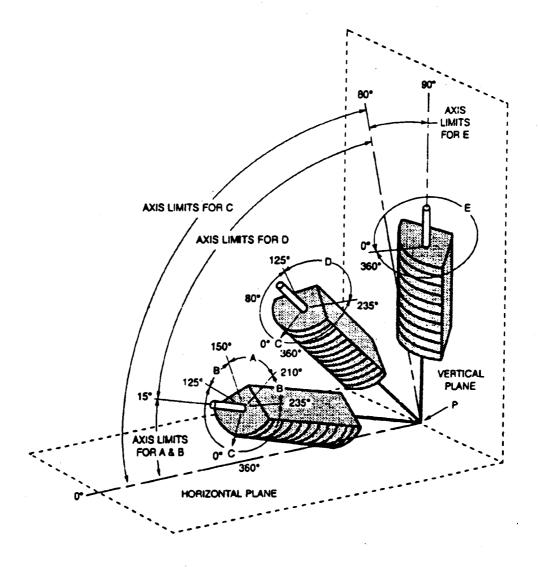
۲- جهت پیشروی

كروه مهندسين بين المللي جوش ايران

Tabulation of positions of groove welds					
Position	Diagram reference	Inclination of axis	Rotation of face		
Flat	A	0° to 15°	150° to 210°		
Horizontal	8	0° to 15°	80° to 150° 210° to 280°		
Overhead	C	0° to 80°	0° to 80° 280° to 360°		
/ertical	D E	15° to 80° 80° to 90°	80° to 280° 0° to 360°		

- The horizontal reference plane is always taken to lie below the weld under consideration.
- 2. The inclination of axis is measured from the horizontal reference plane toward the vertical reference plane.
- 2. The increation of axis is measured multi-energy representation of the theoretical reference plane.
 3. The angle of rotation of the face is determined by a line perpendicular to the theoretical face of the weld which passes through the axis of the weld. The reference position (0°) of rotation of the face invariably points in the direction opposite to that is which the axis angle increases. When looking at point P, the angle of rotation of the face of the weld is measured in a clockwise direction from the reference position (0°).

Positions of Groove Welds


شكل ٣- وضعيت جوشكاري شياري.

كروه مهندسين بين المللي جوش ايران

شركت كاوش همايش

Tabulation of positions of fillet welds					
Position	Diagram reference	Inclination of was	Retation of face		
Flat	A	0° to 15°	150° to 210°		
Horizontal	8	0° to 15°	125° to 150° 210° to 235°		
Overhead	С	0° to 80°	0° to 125° 235° to 360°		
Vertical	0 E	15° to 80° 80° to 90°	125° to 235° 0° to 380°		

Positions of Fillet Welds

شکل ۴- وضعیت جوشکاری گلویی .

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

(Position (s) of Groove / Position (s) of Fillet) وضعیت شیاری یا گلویی (۲-۵-۱

برای وضعیت جوشکاری علائم اختصاری پیشنهاد شده که در جدول ۱۰ دیده می شوند. وضعیت جوشکاری بستگی به : نوع فرایند جوشکاری ، قابلیت دسترسی خطوط جوش ، ابعاد و اندازه قطعه کار ، نحوه ساخت و امکانات موجود دارد.

SON Sig arthurs & South des

جوشکاری گلویی لوله		جوشکاری گلویی ورق		جوشکاری شیاری لوله		جوشکاری شیاری ورق	
علامت	وضعيت	علامت	وضعيت	علامت	وضعيت	علامت	وضعيت
1F- Rotated	لوله مورب با چرخش	1F	تخت	1G-Rotated	چرخش افقیلول	1G	تخت
2F	لوله ثابت عمودی	2F	افقى	2G	لوله در حالت عمودی	2G	افقی
2FR	لوله افقی با چرخش	3F	عمودى	5G	لوله افقى ثابت	3G	عمودى
4F	لوله ثابت عمودی ، جوش بالا سری	4F	بالاسرى	6G	لوله مورب ثابت	4G	بالاسرى
5F	لوله افقی ثابت (تمامی وضعیت ها)			6GR	لوله مورب با پخ T،K,Y		

جدول ۱۰- علائم اختصاری وضعیت های جوشکاری .

(Welding Progression) جهت پیشروی (۲-۵-۲

در این قسمت جهت پیشروی جوشکاری ذکر می گردد ، که عمدتاً برای جوشهای عمودی جهت پیشروی از پائین به بالا (Upward) می باشد.

۲-۶) پیشگرم (QW-406) پیشگرم

معمولاً برای جلوگیری از ترکیدگی ، پیچیدگی و اعوجاج ، پیدایش فازهای ناخواسته و ... قبل از جوشکاری ، قطعه کار پیشگرم می شود. همچنین در حین عملیات جوشکاری ، کنترل دمای بین پاسها

•

63

آشنایی با تست و دستورالعمل جوشکاری

برای جلوگیری از کاهش دمای قطعه کار به کمتر از دمای پیشگرم و بالا رفتن از حد مجاز - دمای بازگشت نهایی (Tempering) - لازم است. این عمل توسط گچ های حرارتی صورت می پذیرد.

بنا به تغییر رنگ و یا ذوب شدن گچ های حرارتی در درجه حرارتی خاص ، دمای قطعه کار قابل کنترل است. حداقل دمای پیشگرم و دمای بین پاسی براساس ضمیمه Λ و با توجه به ضخامت ورق مربوطه تعیین می شود. البته در استاندارد Sec VIII یا ASME . Sec دمای پیشگرم برای فلزات مختلف با توجه به ضخامت پیشنهٔ د شده است. در صورتیکه درجه حرارت محیط کمتر از Ω 18° باشد انجام عملیات جوشکاری صحیح نیست. دمای پیشگرم باید حداقل به فاصله Ω 16.2 میلی متر (Ω 18 اینچ) در اطراف محل جوش ثابت باشد. استاندارد مرتبط با پیشگرم می باشد.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از :

- ۱- حداقل دمای پیشگرم
- ۲- حداکثر دمای بین پاسی
 - ۳- نگهداری پیشگرم

(Preheat Temp. (min)) حداقل دمای پیشگرم

همانطور که قبلا" ذکر شد ، درجه حرارت پیشگرم با توچه به جنس قطعه و ضخامت آن و با استفاده از ضمیمه ۸ تعیین می شود. لازم به ذکر است در صورت تفاوت مقدار پیشگرم لازم برای دو فلز پایه ، حداقل دمای پیشگرم بین دو قطعه است.

(Interpass Temp. (max) حداكثر دماي بين پاسي (-9-7) حداكثر دماي بين پاسي

حداقل درجه حرارت بین پاسی نیز مطابق با جدول موجود در ضمیمه Λ تعیین می شود. حداکثر دمای بین پاسی نیز حداکثر دمای بازگشت نهایی (Tempering) فلز پایه می باشد. به عنوان مثال حداکثر دمای بین پاسی برای فنزات موجود در 300° ، P No.: ۱ پیشنهاد می شود.

(Preheat Maintenance) نگهداری پیشگرم (۲-۶-۳

محدوده حرارتی که WPS در اثر تغییرات پیشگرم در آن صدق می کند ، در این قسمت ذکر میشود.

شرکت کاوش همایش

موارد پیشنهادی برای ارائه در این قسمت عبارتند از:

١ - محدودة دما

٢- محدودة زمان

۳- دیگر موارد

(Temperature Range) محدودة دما

رایج ترین عملیات حرارتی، تنش زدایی پس از جوشکاری است. موارد زیر در تنش زدایی لحاظ می شود: الف) در مورد فولادهای کوئنچ – تمپر شده حداکثر دما ($^{\circ}$ F) $^{\circ}$ 0 (1100) $^{\circ}$ 0 .

- ب) براى ساير فولادها محدوده دمايي (1200°F) 590°C 650°C ساير فولادها محدوده دمايي
- ج) درجه حرارت کوره به هنگام قرار دادن نمونه در آن نباید از (600°F) ℃315°C تجاوز نماید.
- د) بالای $^{\circ}$ 315 نرخ گرم کردن نباید از $^{\circ}$ 220 بیشتر شود. نرخ گرم کـردن بـا اسـتفاده از فرمـول $^{\circ}$ 220/t که $^{\circ}$ خضامت بر حسب اینچ است ، بدست می آید.
- ه) در حین گرم کردن اختلاف دمای دو قسمت از قطعه به فاصله 4.6 متر نباید بیشتر از 140°C گردد.
- و) در حین نگهداری در درجه حرارت تنش زدایی ، اختلاف دمای هیچ دو نقطـه ای از قطعـه نبـاید از 83°C بیشتر شود.
- ز) در سرد کردن قطعه نرخ سرمایش نباید از $^{\circ}$ 260 تجاوز نماید. نرخ سرد کردن با استفاده از فرمول $^{\circ}$ در سرد کردن قطعه نرخ سرمایش نباید از فرمول $^{\circ}$ که $^{\circ}$ خامت بزرگترین مقطع بر حسب اینچ است ، محاسبه می شود.
- ح) برای تنش زدایی لوله ها ، مخازن و اشکال دوار با استفاده از رابطه 120 / (D+1270) که در آن D قطر لوله بر حسب میلی متر است ، ضخامت معادل مقطع محاسبه شده و پس از مقایسه ضخامت مقطع حقیقی قطعه با مقدار محاسبه شده براساس بزرگترین مقدار بین این دو مقدار ، زمان نگهداری و نرخ سرمایش و گرمایش بدست می آید.

۲-۷-۲) زمان نگهداری (Time Range)

زمان نگهداری برای تنش زدایی بسته به ضخامت قطعه تغییر می کند. معمولاً زمان نگهداری فولادهای کوئنچ – تمپر با توجه به کمتر بودن درجه حرارت ، بیش از دیگر فولادهاست.

شرکت کاوش همایش

Y-۷) عملیات حرارتی پس از جوشکاری (QW-407) عملیات حرارتی پس از جوشکاری

عملیات حرارتی پس از جوشکاری عمدتاً عملیات تنش زدایی (Stress Relieving) است. برای جوشکاری فولادهای پر کربن ، عملیات حرارتی پس از جوشکاری به اندازه پیشگرم اهمیت دارد. عملیات حرارتی پس از جوشکاری بستگی به : ترکیب شیمیایی ، ضخامت ، شکل اجزاء و شرایط کاری قطعه دارد. استاندارد مربوط به QW-407 ، PWHT می باشد. در این کد عملیات حرارتی پس از جوشکاری برای موادی با PNo.: 1.3.4.5.6.9.10.11 بصورت زیر تقسیم بندی می شود :

الف) بدون PWHT

(```

(

- ب) PWHT زیر درجه حرارت استحاله پائینی
- ج) PWHT بالای درجه حرارت استحاله بالایی (مانند نرماله کردن)
- د) PWHT بالای درجه حرارت استحاله بالایی به همراه عملیات حرارتی ثانویه زیر درجه حرارت استحاله پائینی (مانند کوئنچ تمپر)
 - ه) PWHT بین درجه حرارت استحاله بالایی و پائینی.

برای دیگر مواد ، PWHT بصورت زیر است :

الف) بدون PWHT

ب) PWHT در یک محدوده درجه حرارت مشخص

در استاندارد ASME , Sec I و در کد UHA . UCS و در کنی ASME , Sec VIII نیز در جداولی مقادیر درجه حرارت و زمان نگهداری عملیات حرارتی برای اعداد مشخصه P نشان داده شده است (ضمیمه P).

شرکت کاوش همایش

در جداول <u>۱۱و۱۱</u> به ترتیب حداقل زمان نگهداری قطعه در کوره جهت تنش زدایی و میزان افزایش زمان نگهداری به ازای کاهش دمای عملیات حرارتی ذکر شده است.

مساوی و کمتر از $\frac{1}{4}$ اینج (6.4 mm)	1/4 in – 2 in (6.4-51 mm)	بالای2 اینچ(51 mm)	حداكثر ضخامت مقطع
15 min	1 hr/in	2 hr ، به ازای هر اینچ 15دقیقه اضافه می شود	زمان نگهداری

جدول ۱۱- حداقل زمان نگهداری در کوره جهت تنش زدایی .

112 (200)	84 (150)	56 (100)	28 (50)	میزان کاهش دما (°C(F°
10	5	3	2	زمان نگهداری به ازای هر اینچ (hr)

جدول ۱۲– میزان افزایش زمان نگهداری به ازای کاهش دمای عملیات .

۳-۷-۳) دیگر موارد (Other)

િ

در این قسمت می توان به نکاتی چون نرخ گرم یا سرد کردن ، عملیات حرارتی مطلوب ، نیاز به عملیات حرارتی ثانویه و اشاره کرد.

Gas (QW-408) گاز (۲−۸

یکی از وظایف مهم گاز محافظ ، حفاظت حوضچه مذاب از آلودگی ناشی از اتمسفر می باشد. متداول ترین گاز مورد استفاده آرگون است. در این قسمت از فرم WPS ، مشخصات گاز محافظ براساس کد

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

QW-408 نوشته می شود. در ضمیمه شماره <u>۱۰</u> ترکیب و درصد گازهای مختلف برای آلیاژهای متفاوت ذکر شده است.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از:

- ۱) نوع گاز محافظ کمکی پشتی
- ۲) درصد ترکیب گاز محافط کمکی پشتی
 - ٣) نرخ جريان گاز محافظ كمكى پشتى

۲-۸-۱) نوع گاز محافظ -کمکی - پشتی (Gas (es)

گازهای N2. He, CO2. Ar یا مخلوطی از این گازها برای حفاظت استفاده می شوند. هر یک از ایس گازهای به تنهایی یا بصورت مخلوط با دیگر گازها مصرف می شوند. گاهی برای کاهش ترشح و کمک به برقراری قوس الکتریکی ۱ تا ۵ درصد اکسیژن به این گازها اضافه می شود. انتخاب بهترین گاز محافظ بستگی به: نفوذ و ذوب مورد درخواست ، شکل جوش ، نوع فلـز پایـه ، شـرایط انتقـال فلـز و سـرعت جوشکاری دارد. جدول ۱۳ گازهای مورد استفاده برای فلزات مختلف را نشان می دهد.

(Mixture) درصد ترکیب مخلوط گاز محافظ-کمکی – پشتی (Mixture)

در این قسمت درصد ترکیب مخلوط گازهای تشکیل دهنده گاز محافظ – کمکی یا پشتی ارائه می شود. ترکیب گاز بر روی شکل ، نفوذ و پهنای جوش تاثیر می گذارد. (ضمیمه ۱۰)

۳-۸-۳) نرخ جریان گاز محافظ-کمکی - پشتی (Flow Rate)

نرخ جریان گاز بر حسب زمان / لیتر سنجیده می شود و باید به نحوی تنظیم گردد که علاوه بر محافظت کامل حوضچه مذاب ، باعث اختلاط شدید مذاب و خروج از حوضچه نشود. نرخ جریان گاز به قطر نازل و شکل جوش بستگی دارد. در حالت کلی این مقدار در حدود 5-15 النات.

شركت كاوش همايش

	محافظ	گاز ،	**************************************	· (à 117-11 a .:	.14.0
CO ₂	O_2	He	Ar	نوع انتقال فلز	نوع فلز
-	-	-	X	قوس باز	آلومينيوم
_	_	-	X	اتصال كوتاه	منيزيم
_	-	X	X	اتصال كوتاه	آلیاژهای نیکل
-	X	-	X	قوس باز	فولادهای کربنی
X	-		X	اتصال كوتاه	فود دهای تربنی
X	-	-	-	قوس باز	فولادهای کم آلیاژ
-	X	-	X	اتصال كوتاه	فوددهای نم آبیار
X	-	X	X	قوس باز	فولادهای زنگ نزن
X	-	X	X	اتصال كوتاه	Stainless Steel

تذكر:

۱-اکسیـژن دارای مفهوم درصـد اکسیـژن موجود درمخـلوط گاز است که معمـولاً بین ۱ تا ۵ درصـد می باشد.

۲-گاز CO₂ دارای مفهوم درصد CO₂ موجود درمخلوط گازاست که معمولاً ۲۵ درصد یا کمترمی باشد.

جدول ۱۳- گازهای محافظ برای انواع فلزات.

Electrical Characteristic (QW-409) مشخصات الكتريكي (٢-٩

تغییر در نوع و قطبیت جریان الکتریکی ، افزایش در گرمای ورودی و یا افزایش حجم و میزان فلز جوش رسوب داده شده در واحد طول ، باعث تغییر در کیفیت جوش می شود. میزان گرمای وارده از رابطه زیر قابل مقایسه است.

(Heat Input) عگرمای وارده
$$\frac{60 \text{ V.I}}{\text{S (Cm/min)}}$$

كروه مهندسين بين المللي جوش ايران

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

همچنین میزان فلز جوش با افزایش اندازه گرده جوش و یا کاهش طول خط جوش به ازای هر الکترود، متناسب است. مشخصات الکتریکی براساس کد QW-409 می باشد.

موارد پیشنهادی برای ارائه در این قسمت عبارتند از :

۱- نوع جریان

٢- قطست

٣- آمپر

۴- ولتـاژ

۵- اندازه و نوع الکترود و تنگستن

8- نوع انتقال فلز مذاب

٧- سرعت تغذيه سيم جوش

(Current AC or DC) نوع جریان (1-9-1

برخی الکترودها با جریان DC و برخی با جریان AC نتیجهٔ بهتری بدست می دهند. در صورت استفاده از جریان DC ذکر قطبیت نیز الزامی است. برای انتخاب جریان می توان به توصیه سازندگان فلز پرکننده مراجعه کرد. باید توجه داشت که شروع قوس با AC مشکلتر است.

(Polarity) قطبیت (۲-۹-۲

در صورت انتخاب جریان DC باید قطبیت را نیز مشخص کرد. قطبیت می تواند مستقیم یا معکوس باشد. در قطبیت مستقیم ، الکترود به قطب منفی و قطعه کار به قطب مثبت وصل می شود. در این حالت به علت تمرکز حرارتی کمتر روی الکترود میزان کمتری از الکترود ذوب شده و نفوذ نیز کمتر می شود. در قطبیت معکوس ، الکترود به قطب مثبت و قطعه کار به قطب منفی وصل می شود و این باعث تمرکز حرارت روی الکترود ، ذوب و نفوذ بیشتر می گردد. علائم اختصاری زیر قطبیت را نشان می دهند.

(...

شرکت کاوش همایش

الف) اتصال الكترود به قطب مثبت در جريان DC :

DCEP: Direct Current Electrode Positive

DCRP: Direct Current Reverse Polarity

ب) اتصال الكترود به قطب منفى در جريان DC:

DCEN: Direct Current Electrode Negative DCSP: Direct Current Straight Polarity

۳-۹-۳) شدت جریان (Range) شدت

بسته به نوع فرایند ، قطر الکترود ، سرعت حرکت ، میزان نفوذ و شدت جریان تعیین می شود. در جدول <u>۱۴</u> میزان شدت جریان برای فرایندهای مختلف برحسب قطر الکترود ارائه شده است.

۲-۹-۴) ولتاژ (Range) ولتاژ

€``

(

ولتاژ دستگاه معمولاً بصورت مدار باز اندازه گیری می شـود. دستگاههای جوشکاری دستی در اقسام مختلف 24-20 ولت و 60-50 ولت موجود می باشند. دستگاههای جوشکاری زیـر پـودری نـیز در همیـن ولتاژ کار می کند (40-30 ولت) . در حین جوشکاری بـا کوتـاه بلنـد شـدن قـوس ، ولتـاژ تغیـیر مـی کند.(جدول ۱۴)

(Tungsten Electrode Size and Type) اندازه و نوع الکترود تنگستن ($\Upsilon-9-\Delta$

در فرایند GTAW ، الکترود تنگستن مصرف نشدنی است. این الکترود با توجه به نقطه ذوب بالا در حین جوشکاری ، ذوب نمی شود. الکترودهای تنگستن در سه گروه تقسیم می شوند. :

تنگستن خالص ، تنگستن – زیر کونیوم ، تنگستن – توریم. متداولترین الکترود مصرفی بــرای فولادها ، الکترود تنگستن اضافه شـده است. توریم الکترود تنگستن اضافه شـده است. توریم باعث برقرار شدن آسان تر قوس و برقرار ماندن قوس می شود. قطر الکــترود تنگستن براساس شـرایط کاری تعیین می شود.

شرکت کاوش همایش

GTAW					
Tungusten Size (mm)	Current (A)	Volts(V)	Travel Speed (Cm/min.)		
. 1	50-80	7-13	5-10		
1.6	60-140	7-13	5-10		
2.4	80-160	7-13	5-10		
3.2	150-300	7-13	5-10		
4.0	250-500	7-13	5-10		

SMAW						
Position	Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)	
	2.5		80-120	16-20	10-20	
Flat &	3.2	AC or	110-150	18-22	10-20	
Horizontal	4.0	DCRP	150-200	19-25	10-20	
	5.0		200-250	19-25	10-20	
	2.5		80-100	16-20	8-13	
Vertical &	3.2	AC or	80-120	18-22	8-13	
Overhead	4.0	DCRP	100-160	19-25	8-13	
	5.0		160-220	19-25	8-13	

SAW					
Position	Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)
	1.2		120-240	20-30	30-50
	2.4	AC or	250-500	25-35	40-60
All Position	3.2	DCRP	300-550	30-35	40-60
	4.0		400-600	30-35	40-60

GTAW					
Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)	
1.2		150-220	20-30	10-20	
1.6	DCRP	180-320	20-30	10-20	

جدول ۱۴ - شدت جریان الکتریکی مورد استفاده در فرایندهای مختلف جوشکاری .

شرکت کاوش همایش

(Mode of Metal Transfer For GMAW) ۶-۹-۶) نوع انتقال فلز مذاب برای GMAW

در جوشکاری GMAW ، مقدار شدت جریان و ترکیب گاز محافظ بر روی روش انتقال فلز مذاب تاثیر می گذارد. روشهای انتقال فلز مذاب عبارتند از:

اتصال كوتاه (Short Circuiting arc) ، اتصال ياششي (Spray arc) و ...

لازم به ذکر است در انتقال فلز به روش پاششی ، حرارت بیشتری به فلز انتقال یافته و نفوذ بیشتر می شود ولی در روش اتصال کوتاه حرارت کمتری به فلز پایه اعمال شده و لذا فلزات نازکتر را در همه وضعیت با این روش انتقال می توان جوش داد.

با استفاده از گاز اُرگن و یا گاز مخلوطی که درصد بیشتری اَرگون دارد و شدت جریان بالاتر ، انتقال فلز بصورت پاششی خواهد بود با کاهش شدت جریان در همین شرایط انتقال بصورت گلوله ای خواهد بود. در پائین ترین حد محدوده شدت جریان و قطر الکترود ، حالت اتصال کوتاه حاکم است. کمترین شـدت جریانی که در آن انتقال پاششی رخ می دهد را شدت جریان انتقالی می نامند. در زیر این شدت جریان تعداد قطرات در واحد زمان کم و اندازه قطرات بزرگ است. در بالاتر از این حد قطرات بسیار کیوچیک و تعداد قطرات در واحد زمان زیاد است . جدول ۱۵ شدت جریان انتقالی بـرای بعضـی فلـزات ارائـه شـده است. در پائین ترین حد محدوده شدت جریان و قطر الکترود ، حالت اتصال کوتاه حاکم است.

Globular-to-Spray Transition Currents for a Variety of Electrodes

Wire Electrode	Wire Escurede Dismeter			Minimum Spray Arc
Туре		Skielding gas	Current, A	
Mild Steel	0.030	0.0	98% argon - 2% oxygen	150
Mild Steel	0.035	0.9	98% argon - 2% oxygen	165
Mild Steel	0.045	1.1	98% argon - 2% coygen	220
Mild Steel	0.082	1.8	98% argon - 2% oxygen	275
Stainless Steel	0.035	0.9	98% argon - 2% coygen	170
Stainless Steel	0.045	1.1	98% argon - 2% oxygen	225
Stainless Steel	0.062	1.6	98% argon - 2% axygen	285
Aluminum	0.030	0.8	Argen	95
Alaminum	0.045	1.1	Argon	135
Aluminum	0.062	1.6	Argon	180
Decoddard Copper	0.035	0.9	Argon	180
Deoxidizaci Copper	87:045	1.1	Argen	210
Decodized Copper	0.082	1.8	Argon	310
Silicon Bronza	0.035	0.9	Argon	165
Silicon Bronza	0.045	1.1	Argon	205
Silicon Bronze	0.082	1.6	Argon	270

حدول ۱۵– شدت جریان انتقال از حالت انتقال فلز مذاب گلوله ای به انتقال فلر مذاب پاششی .

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

(Electrode Wire Feed Speed Range) سرعت تغذیه سیم جوش (۲-۹-۷

در این قسمت سرعت تغذیه سیم جوش به حوضچه مذاب تعیین می شود (ضمیمه <u>۱۰</u>) .

: Technique (QW-410) تکنیک و روش کار

نكات تكنيكي روش جوشكاري براساس استاندارد QW-410 مي باشد.

موارد پیشنهادی برای ارائه در این بخش عبارتند از :

۱- گرده (مهره) جوش نواری یا موجی (بافته ای)

۲- سایز کلاهک یا نازل عبور گاز

۳- تمیز کاری اولیه و بین پاسی

۴- روش برداشتن پشت جوش

۵- نوسان

۶- محدوده فاصله تماس لوله با کار

٧- جوش تک پاسه يا چند پاسه در هر طرف

۸- الکترودهای تکی یا چندتایی

۹- سرعت جوشکاری

۱۰-چکش کاری

۱-۱۰-۱) مهره جوش نواری یا بافته ای (String or Weave Bead)

در این قسمت شکل گرده (مهره) مورد نظر ذکر می شود. در مواردی که گرده های نازک کافی باشد و یا کمترین حرارت وارده به قطعه لازم است ، از گرده های نواری استفاده می شود زیـرا سرعت حرکت دست در این تکنیک بیشتر است. گرده های بافته ای به اشکال گردشی ، هلالی ،8 اجرا می شود.

شرکت کاوش همایش

۲-۱۰-۲) سایز کلاهک یا نازل عبور گاز (Orifice or Gas Cup Size)

در فرایندهای جوشکاری با گاز محافظ ، اشاره به مورد فوق ضروری است. جدول ۱۶ برای فرایند GTAW مقادیر نازل عبور گاز را ارائه می دهد.

Typical Current Ratings for Gas- and Water-Cooled GTAW Torches

	Terch Size				
Torch Characteristic	Small	Median	Large		
Maximum current (continuous duty), A	200	200-300	500		
Cooling method	Ges	Water	Water		
Electrode diameters eccommodated, it.	0.020 - 3/32	0.040 - 5/32			
Gas cup diameters accommodated, in.	1/4 - 5/8	1/4 - 3/4	3/8 - 3/4		

جدول ۱۶- اندازهٔ نازل وقطر الكترود در جوشكاری GTAW .

۳-۱۰-۳) تمیزکاری اولیه و بین پاسی (برس زدن ، سنگ زدن و)

Initial and Interpass Cleaning (Brushing, Grinding,)

تمییز کردن سطح قبل از انجام جوشکاری مانند زدودن زنگارها (اکسیدها)، چربیی و کثیفی قطعه، باعث افزایش کیفیت جوش می شود. همچنین در حین عملیات جوشکاری چند پاسه و در اتمام کار، تمیز کردن سطح اعم از پاک کردن سرباره و ... باعث کاهش و حذف عیوب جوش نظیر سرباره حبیس شده در مذاب خواهد شد.

۲-۱۰-۴) روش برداشتن پشت جوش (Method of Back Gouging)

در صورت نیاز به جوشکاری از پشت جوش ، لازمست تا ابتدا اولین پاس جوش ، از پشت اتصال توسط یکی از روشهای زیر برداشته شود :

Air Carbon Arc gouging

الف) قوس حاصل از الكترود كربني

Oxy acetylene gouging

ب) برداشتن بوسیله شعله اکسی استیلن

Ginding

ج) سنگ زدن

شرکت کاوش همایش

۵-۱۰-۵) نوسان (Oscillaiton)

پهنا و فرکانس حرکت نوسانی الکترود در جوشکاری ماشینی یا اتوماتیک در این قسمت ذکر میشود.

(Contact Tube to Work Distance) محدوده فاصله تماس لوله با كار

این عامل تنها برای فرایندهای SAW . GMAW قابل ذکر بوده و عبارتست از : فاصله بین نازل نگهدارنده الکترود جوش با قطعه کار که در حقیقت طول مؤثر الکترود را نشان می دهد.

(Multiple or Single Pass (Per side) جوش تک پاسه یا چند پاسه در هر طرف (۲-۱۰-۷

تعداد پاسهای جـوشکاری لازم در هر طـرف از طرح پخ در این قسمت مطرح میشود. تنها ذکر ، یـک یا چند پاسه در این قسمت کافیست.

(Multiple or Single Electrodes) الكترودهاي تكي يا چندتايي (۲-۱۰-۸

اغلب فرایندها بصورت تک الکترودی استفاده می شود. در فرایند SAW استفاده از چند الکترود نازک می تواند اقتصادی تر بوده و باعث افزایش نرخ رسوب نسبت به یک الکترود ضخیم گردد.

(Travel Speed (Range)) سرعت حرکت (۲-۱۰-۹

این عامل مخصوصاً در جوشکاریهای اتوماتیک اهمیت فراوان دارد. سرعت حرکت عامل تعیین کننده میزان حرارت وارده به قطعه است. عموماً سرعت جوشکاری بصورت زمان / طول تعیین می شود. (جدول ۱۴)

۰۱-۱۰) چکش کاری (Peening)

چکش کاری عملی مکانیکی است ، برای کاهش اثرات سیکل های حرارتی که تنش پسماند زیاد ، اعوجاج و ترک بوجود می آورند. به عبارت دیگر چکش کاری عملی است برای تنش زدایی.

شرکت کاوش همایش

۲-۱۱) نكات قابل توجه ضمن ارائه روش جوشكاري

براساس استاندارد های AWS محدوده ای جهت تعیین روش جوشکاری در هر فرایند وجود دارد که در زیر به آنها اشاره میشود.

1-11-1) جوشكاري قوس با الكترود روپوش دار

- ۱) بهتر است که قطعه حدالامکان در وضعیت تخت قرار بگیرد .
- ۲) کلاس و اندازهٔ الکترود ، طول قوس ، ولتاژ و آمپر باید متناسب با ضخامت قطعه ، شکل شیار ،
 وضعیت جوشکاری و... انتخاب شوند. بهتر است که آمپر را با توجه به پیشنهاد تولید کنندهٔ الکترود انتخاب شود.
 - ٣) بالاترين قطر الكترود مجاز در حالات مختلف جوشكاري به صورت زير است:
 - ۱-۳) 8 میلی متر برای تمامی جوشهای تخت به جز در پاس ریشه .
 - ۲-۳) 6.4 میلی متر برای جوشهای گلویی افقی .
- ۳-۳) 6.4 میلی متر برای پاس ریشه جوشهای گلویی در حالت تخت وپاس ریشـهٔ جوشـهای در حالت تخت که دارای پشت بند بوده و درز اتصال 6.4 میلی متر باشد.
 - ۴-۳) 4 میلی متر برای جوشهایی که با الکترود EXX14 و الکترود های کم هیدروژن در وضعیتهای عمودی و بالاسری انجام می شوند.
 - ۵-۳) 4 میلی متر برای پاس ریشهٔ جوشهای شیاری و کلیهٔ حالات غیر از موارد فوق الذکر.
 - ۴) حداقل اندازهٔ الکترود مورد استفاده در پاس ریشه باید به اندازه ای باشد که ترک ایجاد نشود.
 - ۵) بالاترین ضخامت پاس ریشه در جوشهای شیاری نباید از 6.4 میلی متر تجاوز نماید.
 - حداکثر ضخامت پاس ریشهٔ جوشهای گلویی تک یا چند پاسه نباید از مقادیر زیر تجاوز نماید:
 - ۱-۶) 9.5 میلی متر در وضعیت تخت.
 - ۲-۶) 8 میلی متر در وضعیت های افقی و بالاسری.
 - ٣-٣) 12.7 ميلي متر در وضعيت عمودي.

Ê

۷) بیشترین ضخامت لایه های بعد از پاس ریشه در جوشکاری های شیاری و گلویی بصورت زیر است :

- ۱-۷) 3 میلی متر برای جوشهایی که در وضیت تخت قرار دارند .
- ۲-۷) 4 میلی متر برای جوشهایی که در وضعیتهای افقی ، بالاسری و عمودی قرار دارند.
- ۸) جهت پیشروی تمامی پاسها در جوشکاری با وضعیت عمودی باید رو به بالا باشد مـگر اینکـه هـدف ترمیم سوختگی کناره جوش بوده و پیشگرم مطابق جداول ضمیمه و حداقــل ۲۰۵۰ در نظر گرفتـه شود . در مورد جوشکاری مقاطع گرد ، ممکن است جوشکاری سـر بـالا یـا سـر پـایین شـود . لـذا لازمست جوشکار قبلاً امتحان شده باشد.
- ۹) در جوشکاری شیاری که نیاز به نفوذ کامل است و از پشت بند نیز استفاده نمی شود ، پس از جوشکاری انجام جوشکاری از یک سمت ، پشت جوش با سنگ زنی و... برداشته شده و پس از آن جوشکاری انجام می شود .در جوشکاری لوله هایی با قطر کم که امکان دسترسی به پشت جوش نیست ، باید از شیارهای خاص و الکترودهای پر نفوذ سلولزی استفاده کرد .

۲-۱۱-۲) جوشکاری قوس زیر پودری با یک الکترود

- ۱) منظور از یک الکترود آن است که تنها یک مفتول یا الکترود به یک سیستم مولد نیرو متصل باشد.
- ۲) تمامی جـوشهای قوس زیر پودری بجز جوشهای گلویی باید در حالت تخت انجام شوند. جوشهای گلویی گلویی ممکن است در یکی از وضعیت های تخت یا افقی انجام شوند. ضخامت جـوشهای گلویی تک یاسه در حالت افقی نباید از 8 میلی متر تجاوز نماید.
- ۳) ضخامت لایه های جوش ، بجز لایه های ریشه و سطحی نباید از 6.4 میلی متربیشتر شود. در صورتیکه اندازهٔ درز اتصال بیش از 12.7 میلی متر باشد ، باید از روش چند پاسه استفاده شود. در صورتیکه پهنای جوش از 15.9 میلی متر بیشتر شود نیز باید از جوشکاری چند پاسه استفاده کرد.
 - ۴) شدت جریان الکتریکی ، ولتاژ قوس و سرعت حرکت باید به گونه ای انتخاب شوند که ذوب کامل فلز پایه و امتزاج آن با مذاب حاصل از سیم جوش ، انجام شده و هیچگونه سر رفتن وسوختگی کناره جوش اتفاق نیفتد.

بیشترین شدت جریان جوشکاری برای شیارهایی که لازمست ذوب در هر دو وجه شیار انجام پذیرد

شركت كاوش همايش

حروه مهندسين بين المللي جوش ايران

- ۶۰۰ آمپر باشد ، بجز در آخرین لایه که استفاده از جریانهای بیشتر نیز مجاز است . بیشترین شدت در وضعیت تخت ۱۰۰۰ آمیر می باشد.
- ۲-۱۱-۲) جوشکاری قوس فلزی با گاز محافظ و جوشکاری قوس با الکترود تو پودری (تک الکترود)
- ۱) حداکثر قطر الکترود برای وضعیت های تخت و افقی 4 میلی متر ، در وضعیت عمودی 2.4 میلی متر
 و در وضعیت بالاسری 2 میلی متر است .
 - ۲) حداکثر اندازهٔ جوش گلویی مجاز در یک پاس برای وضعیت های تخت و عمودی 12.7 میلی متر ،
 برای وضعیت افقی 9.5 میلی متر و برای و برای وضعیت بالاسری 8 میلی متر است .
- ۳) در فرایند GMAW ضخامت لایه های جوش در حالت پخ سازی شده بجز پاس ریشه و پاس نهایی نباید از 6.4 میلی متر بیشتر باشد ، باید باید از 6.4 میلی متر بیشتر باشد ، باید جوشکاری طی چند پاس انجام شود. در مورد پخ هایی که پهنایشان از 15.9 میلی متر بیشتر است ، باید از روشهای چند پاسه استفاده کرد .
 - ۴) در فرایند FCAW ضخامت لایه های جوش در حالت پخ سازی شده بجز پاس ریشه و پاس نهایی نباید از 6.4 میلی متر تجاوز نماید. در صورتیکه درز اتصال از 12.7 میلی متر بیشتر باشد، باید جوشکاری طی چند پاس انجام شود. جوشکاری پخ هایی که در وضعیت های تحت، افقی یا بالاسری پهنایی بیش از 15.9 میلی متر دارند نیز بصورت چند پاسه انجام می شود.
 - ۵) شدت جریان الکتریکی ، ولتاژ قوس ، نرخ خروج گاز ، نحوهٔ انتقال فلز مذاب و سرعت حرکت باید به گونه ای انتخاب شوند که در هر پاس ، دو طرف پخ بخوبی ذوب شود . ضمناً سر رفتن ، خلل وفرج وسوختگی کناره جوش اتفاق نیفتد.
- ۶) جهت جوشکاری برای وضعیت عمودی باید همواره به سمت بالا باشد. مگراینکه جوشکاری ترمیمی برای رفع سوختگی کنارهٔ جوش انجام شود. پیشگرم مطابق جداول ضمیمه و حداقل ℃21 در نظر گرفته شود. در مورد جوشکاری مقاطع گرد ، ممکن است جوشکاری سر بالا یا سر پایین شود. لذا لازمست جوشکار قبلاً امتحان شده باشد.

شرکت کاوش همایش

حروه مهندسين بين المللي جوش ايران

- ۷) در جــوشکاری شیاری که نیاز به نفوذ کـامل است و از پشت بند نیز استفاده نمی شود ، پس از جوشکاری یک جوشکاری از یک سمت ، پشت جوش با سنگ زنی و ... برداشته شده و پس از آن جوشکاری یک پاس از پشت انجام می شود .
- ۸) فرایند GMAW نباید در معرض باد انجام شود ، مگر اینکه قسمت جوشکاری به گونه ای محافظت شود. محافظ باید به شکلی باشد که مانع افزایش سرعت باد از ۵ مایل بر ساعت در اطراف محل جوش شود.
 - ۹) به منظور پیشگیری از ذوب ریشهٔ جوش بهتر است از پشت بندهایی از جنس مس ، فلاکس و ...استفاده شود. بویژه در مواردی که الکترود مصرفی از نوع کم هیدروژن باشد.

۲-۱۲) نکات لازم در نوشتن WPS

آنچه تاکنون ارائه شد ، تشریح و نحوه تنظیم یک WPS در حالت کلی بود. براساس استاندارد ASME در هر فرایند ، متغیرهای موجود به سه دسته تقسیم می شوند :

متغيرهاي اساسي

متغيرهاي تكميلي

متغيرهاي غيراساسي

(Essential Variables) متغیرهای اساسی (T-۱۲-۱

متغیرهایی که تغییر در آنها باعث نوشتن یک WPS یا PQR جدید می شود.

۲-۱۲-۲) متغیرهای تکمیلی (Supplementary Essential Variables):

این متغیرها در صورتی باعث نوشتن یک WPS یا PQR جدید می شوند که در مشخصات فنی اشاره ای به تست ضربه جهت تعیین کیفیت شده باشد.

(Nonessential Variables) متغيرهاي غيرضروري (T-۱۲-۳

متغیرهایی که تغییر آنها باعث نوشتن یک WPS یا PQR جدید نمی شود.

براساس کد ASME متغیرهای مختلف هر فرایند در کدهای QW-252 تا QW-262 ذکر شده است. نمونه های از این کدها در ضمیمه ۱۱ ارائه شده است.

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

در ابتدا چنین به نظر می رسد که برای هر شکل اتصال باید یک WPS مجزا نوشت اما با استفاده از متغیرهای اساسی می توان گفت استفاده از متغیرهای اساسی و تکمیلی باعث کاهش تعداد PQR ، WPS های لازم و مورد استفاده برای یک پروژه می گردد.

مراي سور گزارش كيفيت روش جوشكارى PQR

شرکت کاوش همایش

مقدمه

هدف از انجام آزمایشات تعیین کیفیت روش جوشکاری آن است که نشان دهیم ، روش جوشکاری تدوین شده (WPS) با اتصالی سالم وبا خواص مکانیکی مطلوب و قابل پذیرش در محدوده استاندارد مربوطه ، بوجود می آورد. نتیجه آزمایشات در فرم خاصی ثبت شده که به آن گزارش کیفیت روش جوشکاری (Procedure Qualification Record (PQR) می گویند.

مراحل تهیه PQR

برای تهیه یک PQR چهار مرحله زیر طی می شود:

۱- آماده سازی و جوشکاری نمونه های مناسب

۲- آزمایش نمونه های تهیه شده

۳- ارزیابی نتایج و نتیجه گیری راجع به آماده سازی ، جوشکاری و آزمایشات

۴- ثبت و تائید نتایج (در صورت قابل قبول بودن آنها)

۱-۳) آماده سازی و جوشکاری نمونه های مناسب

معمولاً نمونه ها به نحوی مونتاژ و ساخته می شوند که درز اتصال در وسط نمونه قرار بگیرد. اندازه ، نوع و ضخامت نمونه باید متناسب با نوع و ضخامت موادی که در تولید جوشکاری می شوند و نیز تعداد ، نوع و اندازه نمونه های آزمایشی لازم برای آزمایشات باشد. مواد ، نحوه و جزئیات جوشکاری نمونه ها باید مطابق با WPS مربوطه باشد ، به عبارت دیگر متغیرهای ضروری باید یکسان باشد. ابعاد و اندازه نمونه ها باید حداقل با مقادیر ذکر شده در استاندارد (ASME. Sec IX, QW-463.1) مطابقت باشد. مطابق با همین استاندارد اندازه و محل نمونه های آزمایش که از نمونه های جوشکاری شده بدست می آیند ، مشخص شده است. در ضمیمه ۱۳ ابعاد نمونه های جوشکاری شده مطابق با استاندارد می شود.

شرکت کاوش همایش

۲-۳) آزمایش نمونه های تهیه شده

آزمایشات مشخصی بر روی نمونه های جوشکاری شده باید انجام شود. نوع و تعداد نمونه هایی که بـرای تست های مخرب لازم است ، بستگی به استاندارد مورد استفاده و مشخصات کاربردی ویــژه سـازه دارد. اغلب تست های غیرمخرب نیز انجام می شوند.

آزمایشهای مورد نیاز برای جوشهای شیاری عبارتند از :

- ۱) بازرسی چشمی (Visual testing)
- ۲) آزمایش کشش با مقطع کاهش یافته برای اندازه گیری استحکام کششی (Tensile test)
 - ۳) ازمایش خمش ریشه برای سلامت جوش (Root Bend test)
 - ۴) آزمایش خمش جانبی برای سلامت جوش (Side Bend test)
 - ۵) آزمایش خمش گرده برای سلامت جوش (Face Bend test)
 - ۶) آزمایش کشش از فلز جوش برای خصوصیات مکانیکی فرایندهای EGW . ESW

(All-Weld Metal tension)

- ۷) آزمایش ضربه برای تعیین چقرمگیی و انرژی ضربه (Impact test)
- ۸) آزمایش ماکرواچ برای سلامت و نفوذ مؤثر ساق جوش (Macroetch test)
 - 9) أزمايش راديوگرافي يا اولتراسونيک (Non destructive test: RT . UT)

همچنین برای جوشهای گلویی (Fillet) آزمایشهای زیر مورد نیاز است :

- ۱) بازرسی چشمی (Visual Inspection)
- ۲) آزمایش ماکرواچ برای سلامت و ذوب کافی جوش (Macroetch test)
 - ۳) آزمایش خمش- جانبی برای سلامت جوش (Side Bend test)
- ۴) آزمایش کششی از فلز جوش برای خصوصیات مکانیکی (All Weld Metal tension)

تعداد ، نوع و روش آماده سازی نمونه های آزمایش جوش در استانداردهای گوناگون تفاوتهای مختصری با هم دارد که برخی از آنها در مورد جوش سر به سر ورق فولاد کربنی با ضخامت کمتر از 10 میلی مـتر بصورت زیر است :

شرکت کاوش همایش

استاندارد ASME . Sec IX : دو عدد آزمایش کشش عرضی ، دو عدد خمـش گرده (°180) ، دو عـدد خمش ریشه (°180)

استاندارد AWS, D1.1 : دو عدد آزمایش کشش عرضی ، دو عدد خمش گرده (°180) ، دو عدد خمش ریشه (°180) ، آزمایش غیرمخرب

استاندارد BS4870 : یک آزمایش کشش عرضی ، یک خمش گرده (۱80°) ، یک خمش ریشه (۱80°) ، بختی سنجی مقطع ، مطالعهٔ مقطع عرضی ، آزمایش غیرمخرب

۱-۲-۳) جوشهای شیاری با نفوذ کامل

تعداد و نوع نمونه هایی که مطابق با کد AWS.DI.۱ جهت تائید کیفیت جوش باید مورد آزمایش قرار بگیرند، در جدول ۱۷ درج شده است. تعداد و نوع نمونه ها به ضخامت ورق بستگی دارد. نکته قابل توجه در این جدول آن است که، بسته به ضخامت طرح جوش می توان از یک ورق نمونه آزمایشی، برای سنجش کیفیت محدوده ای از ضخامتها استفاده کرد. در مورد لوله نیز معیار آزمایش ها، قطر لوله و ضخامت لوله است.

تعداد و نوع آزمایشات لازم جهت تعیین کیفیت جوش براساس استاندارد ASME. Sec IX برای جوشهای شداد و نوع آزمایشات لازم جهت تعیین کیفیت جوش براساس استاندارد ASME. Sec IX برای جوشهای شداد و نوع آزمایشات لازم جهت تعیین کیفیت جوشهای

۱-۱-۲-۳) آزمایشهای غیرمخرب

براساس کد AWS, D1.1 ، قبل از آماده کردن نمونه ها برای آزمایشهای مخرب ورق یا لوله ، نمونه ها به منظور تشخیص سلامت جوش بصورت غیرمخرب آزمایش می شوند :

الف) آزمایش رادیوگرافی یا اولتراسونیک (RT.UT) : به غیر از قسمت های دورریز دو انتهای ورق نمونه ، آزمایشهای غیر مخرب ورق و جوش دور تا دور لوله ها براساس ASW.DI.I . Sec 6.Part C . E. F نمونه ، آزمایشهای غیر مخرب ورق و جوش دور تا دور لوله ها براساس

ب) بهتر است برای قابل قبول تر شدن نتایج ازمایشها و اطمینان از حصول کیفیت ، پس از تائید نمونه توسط اولتراسونیک یا رادیوگرافی ، آزمایشهای زیر نیز بر روی نمونه انجام شود :

كروه مهندسين بين المللي جوش ايران

شركت كاوش همايش

WPS Qualification—Complete Joint Penetration Groove Welds: Number and Type of Test Specimens and Range of Thickness and Diameter Qualified (sea 4.4) (Dimensions in Millimeters)

. 1. Tests	on Plat	e ^{1, 2}	Number of	Specimens		Pipe or Tu	inal Plate, be Thickness ^{3,} ified, mm
Nominal Thickne Tested,	ss (T)	Reduced Section Tension (see Fig. 4.14)	Root Bend (see Fig. 4.12)	Face Bend (see Fig. 4.12)	Side Bend (see Fig. 4.13)	Min	Max
3.2 ≤ T	≤ 9.5	2	2	2		3.2	2T
9.5 < T <	< 25.4	2	-		4	3.2	2T
25.4 and	over	2	_	_	4	3.2	Unlimited

2. Tests on Pipe or Tubing 1, 7

				Number of	Specimens		Nominal	Nominal Plate, Pipe or Tube Wall Thickness ^{3, 4} Qualified, mm	
	Nominal Pipe Size or Diam., mm	Nominal Wall Thickness, T. mm	Reduced Section Tension (see Fig. 4.14)	Root Bend (see Fig. 4.12)	Face Bend (see Fig. 4.12)	Side Bend (see Fig. 4.13)	Diameter ⁵ of Pipe or Tube Size Qualified, mm	Min	Max
		3.2 ≤ T ≤ 9.5	2	2	2	_	Test diam and over	3.2	2T
	< 610	9.5 < T < 19.0	2	_		4	Test diam. and over	T/2	2Т
Job Size Test Pipes		T ≥ 19.0	2	_	_	4	Test diam. and over	9.5	Unlimited
		3.2 ≤ T ≤ 9.5	2	2	2	_	Test diam. and over	3.2	2T
	≥610	9.5 < T < 19.0	2	_	_	4	610 and over	T/2	2T
		T ≥ 19.0	2			4	610 and over	9.5	Unlimited
Standard	50 mm OD × or 75 mm OD	,	2	2	2	<u> </u>	19 through 100	3.2	19.0
Test Pipes	150 mm OD × or 200 mm OD:		2	· 	_	4	100 and over	4.8	Unlimited

3. Tests on Electroslag and Electrogas Welding 1, 8

		Number of S	Specimens			Mate Thickness salified
Nominal Plate Thickness Tested	Reduced Section Tension (see Fig. 4.14)	All-Weld- Metal Tension (see Fig. 4.18)	Side Bend (see Fig. 4.13)	Impact Tests	Min	· Max
T	2	1	4	Note 6	0.5T	1.17

Notes:

- 1. All test plate, pipe or tube welds shall be visually inspected (see 4.8.1) and subject to NDT (see 4.8.2). One test plate, pipe or tube shall be required for each qualified position
- 2. See Figures 4.10 and 4.11 for test plate requirements.
- 3. For square groups wells, that are qualified without backgoinging, the maximum thickness qualified shall be limited to the test plate thickness.
- 4. CIP groove weld qualification on any thickness or diameter qualifies any size of fillet or PJP groove weld for any thickness.
- 5. Qualification with any pipe diameter qualifies all box section widths and depths.
- 6. If specified, impact tests shall conform to Annex III.
- 7. See Table 4.1 for the groove details required for qualification of tubular butt and T-, Y-, K-connection joints.
- 8. Sec Figure 4.9 for plate requirements.

جدول ١٧- تعداد ونوع نمونه هاي آزمايش كيفيت جوش برحسب ضخامت .

شرکت کاوش همایش

۱- بازرسی چشمی

۲- آزمایش ذرات مغناطیسی برای تشخیص ترک

۳- آزمایش مایعات نافذ برای تشخیص ترک های سطحی

۲-۱-۲) آزمایشات مکانیکی

نمونه هایی که مطابق بخش قبل مورد تائید آزمایشات غیرمخرب قرار گرفته باشند مطابق با ضمیمه <u>۱۳</u> بریده و برای تست های مکانیکی نمونه های لازم مطابق با ابعاد استاندارد تهیه شده و مورد آزمایش قرار می گیرند.

در صورتیکه جنس و خصوصیات مکانیکی دو فلز پایه یا الکترود و فلز پایه متفاوت باشد ، بهتر است بجای آزمایش خمش عرضی (سطح و ریشه) از آزمایشات خمش طولی سطح و ریشه استفاده شود.

۲-۲-۳) جوشهای شیاری با نفوذ جزئی جوش

تعداد و نوع نمونه های لازم جهت تعیین کیفیت جوشهای شیاری با نفوذ جزئیی جوش در جدول ۱۸ ارائه شده است.

Number and Type of Test Specimens and Range of Thickness Qualified—WPS Qualification; Partial Joint Penetration Groove Welds (see 4.10)

		Numb	er of Specimen	as ^{1, 2}				
	Macroetch for				Qualification Ranges ^{3, 4}			
Test Groove Depth, T	Weld Size (E) Section 4.10.2 Tension 4.10.3 (see Fig.		Root Bend (see Fig.	Face Bend (see Fig.	Side Bend (see Fig.	Groove	Nominal Plate, Pipe or Tul Plate Thickness, in. (mn	
ia. (mm)	4.10.4	4.14)	4.12)	4.12)	4.13)	Depth	Min	Max
1/8 ≤ T ≤ 3/8 (3.2 ≤ T ≤ 9.5)	3	2	2	2		Т	1/8 (3.2)	2T
3/8 < T ≤ 1 (9.5 < T ≤ 25.4)	3	2		_	4	Т	1/8 (3.2)	Unlimited

BASIC REQUIREMENTS

Notes

1. One test plate, pipe or tubing per position shall be required. See Figures 4.10 or 4.11 for test plate. Use the production PJP groove detail for qualification. All plates, pipes or tubing shall be visually inspected (see 4.8.1)

2. If a partial joint penetration bevel- or J-groove weld is to be used for T-joints or double-bevel- or double-J-groove weld is to be used for corner joints, the butt joint shall have a temporary restrictive plate in the plane of the square face to simulate a T-joint configuration.

See the pipe diameter qualification requirements of Table 4.2.
 Any PJP qualification shall also qualify any fillet weld size on any thickness.

The same and the s

جدول ۱۸- تعداد ونوع نمونه های آزمایش کیفیت جوش شیاری با نفوذ جزئی .

بهتر است که نمونه مشابه شرایط WPS پخ زنی و جوشکاری شود. البت ه نیاز به انجام آزمایش برای جوشهای با نفوذ بیش از یک اینچ نیست. برای جوشهای T و گوشه (Corner) نمونه به شکل سربه سر و با در نظر گرفتن Root Face کافی شبیه سازی می شود . سپس نمونه جوشها به صورت زیر آزمایش می شوند :

الف)برای کلیه جوشهایی که WPS آنها مطابق کد AWS تنظیم شده است ، سه نمونه از مقطع جـوش برای آزمایش ماکرواچ مورد نیاز است. اندازه مؤثر ساق جوش مشاهده و با ملاحظات طراحی مقایسه مـی شود.

ب) در صورتیکه بخواهیم از نتایج تعیین کیفیت جوش و اتصال شیاری با نفوذ کامل در مورد اتصال میاری با نفوذ جزئی استفاده کنیم ، سه نمونه از مقطع جوش برای آزمایش ماکرواچ نیاز است.

ج) اگر شرایط جوشکاری با هیچ یک از موارد فوق الذکر سازگار نباشد ، ابتدا نمونه ای با شیار مشابه تهیه و جوشکاری نموده ، سپس مقطع جوش را با آزمایش ماکرواچ مطالعه می کنیم تا سأق جوش به اندازه کافی باشد. پس از آن از پشت نمونه تا رسیدن به ضخامت مؤثر ساق جوش ، ماشینکاری کرده و از قسمت باقیمانده ، نمونه های آزمایش خمش و کشش تهیه می کنیم. نحوه تهیه نمونه ها شبیه جوشهای شیاری با نفوذ کامل است.

۳-۲-۳) جوشهای گلویی (Fillet)

نوع و تعداد نمونه جوشهای مورد نیاز جهت تعیین کیفیت جوشهای گلویی براساس AWS. DI.۱ در جدول ۱۹ مرا مدرد نیاز جهت تعیین کیفیت جول ۱۹ مرا مده است.

استاندارد ASME بخش 4 . 451.3 و نیز به تعیین کیفیت جوشهای گلویی می پردازد. (ضمیمه $\frac{1}{1}$) نمونه آزمایش جوش گلویی نیز مطابق با $\frac{1}{1}$ $\frac{1}{1}$ (ضمیمه $\frac{1}{1}$) تهیه می شود.

در مورد یک سازه تهیه دو نمونه جوش گلویی کافیست :

الف) یک آزمایش از جوش گلویی یک پاسه در حداکثر اندازه .

ب) یک آزمایش از جوش گلویی جند پاسه در حداکثر اندازه .

شرکت کاوش همایش

Number and Type of Test Specimens and Range of Thickness Qualified— WPS Qualification; Fillet Welds (see 4.11.1)

,			Test:	Specimens Requir	ed²	Sizes	Qualified
Test Specimen	Fillet Size	Number of Welds per WPS	Macroetch 4.11.1 4.3.4	All-Weld-Metal Tension (see Figure 4.18)	Side Bend (see Figure 4.13)	Plate/Pipe Thickness ¹	Fillet Size
Plate T-test	Single pass, max size to be used in construction	I in each position to . be used	3 faces		_	Unlimited	Max tested single pass and smaller
(Figure 4.19)	Multiple pass, min size to be used in construction	I in each position to be used	3 faces		_	Unlimited	Max tested multiple pass and larger
Pipe T-test ³	Single pass, max size to be used in construction	l in each position to be used (see Table 4.1)	3 faces (except for 4F & 5F, 4 faces req'd)	-		Unlimited	Max tested single pass and smaller
(Figure 4.20)	Multiple pass, min size to be used in construction	1 in each position to be used (see Table 4.1)	3 faces (except for 4F & 5F, 4 faces req'd)	-		Unlimited	Min tested multiple pass and larger
Groove test ⁴ (Figure 4.23)	-	l in 1G position	_	1	2	•	ng consumables T-test above

Notes:

1. The minimum thickness qualified is 1/6 in. (3.2 mm).

2. All welded test pipes and plates shall be visually inspected per 4.8.1

3. See Table 4.2(2) for pipe diameter qualification.

جدول ۱۹- تعداد ونوع نمونه های آزمایش کیفیت جوش گلویی .

سپس نمونه ها از عرض بریده شده ، ماکرواچ روی آنها انجام می شـود (مطالعـه سـاق جـوش) . بـرای تعیین کیفیت مواد مصرفی لازم است آزمایشات خمش جانیی و کشش از فلز جوش(مطابق ضمیمه <u>۱۳</u>) انجام شود.

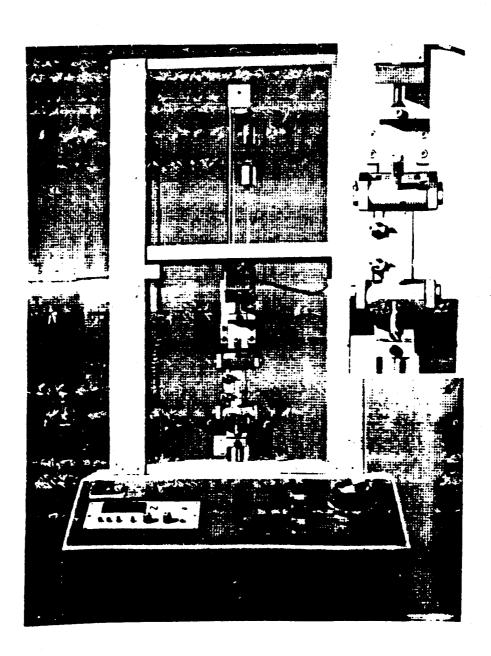
۲-۲-۴) روش انجام آزمایشها

۱-۲-۴) آزمایش کششی با مقطع کاهش یافته

قبل از انجام آزمایش تمام اندازه های نمونه کنترل می شوند. سپس نمونه در فک های دستگاه قرار گرفته و بار اعمال میشود. آزمایش تا حد پارگی نمونه ادامه می یابد. اگر حداکثر بار وارده را بر مساحت

^{4.} When the welding consumables used do not conform to the prequalified provisions of section 3, and a WPS using the proposed welding consumables has not been established by the contractor in accordance with either 4.9 or 4.10.1, a complete joint penetration groove weld test plate shall be welded in accordance with 4.9.

•

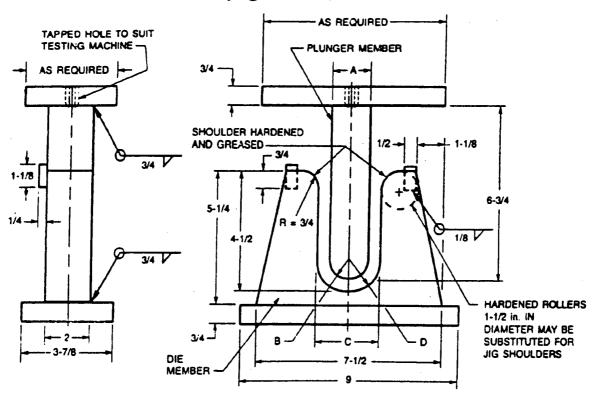

(, , ,

آشنایی با تست و دستورالعمل جوشكاري

شرکت کاوش همایش

سطح مقطع نمونه تقسیم کنیم ، استحکام کششی بدست خواهد آمد. همچنین از روی تفاوت طول نمونه ، قبل و بعد از آزمایش (اندازه ثانویه با کنار هم قراردادن نمونه های شکسته اندازه گیری می شود) امكان محاسبه درصد ازدياد طول وجود دارد.

شکل ۵- نمونه ای از دستگاه کشش.



۲-۴-۲) آزمایش ماکرواچ

ابتدا مقطعی از نمونه بریده شده و توسط سنگ صاف میشود. سپس با سنباده زنی متوالی با کاغذ سنباده های مختلف – از زبر به نرم – سطح نمونه صیقلی می شود. برای اچ کردن محلولهای مختلفی وجود دارد که در استاندارد ASME, Sec IX در بخش QW-470 ذکر شده است.

٣-٢-٢-٣) آزمايش خمش

نمونه ها در سه شکل ریشه ، سطحی و جانبی تهیه می شوند. نمونه ها مطابق شکل ع (QW-466) در نگهدارنده قرار گرفته و بوسیله یک سنبه سرگرد ، خمیده می شوند.

specified or actual base metal yield strength, psi	A in.	B in.	C in.	D in.
50 000 & under	1-1/2	3/4	2-3/8	1-3/16
over 50 000 to 90 000	2	_ 1	2-7/8	1-7/16
90 000 & over	2-1/2	1-1/4	3-3/8	1-11/16

Note: Plunger and interior die surfaces shall be machine-finished.

شكل ۶- مشخصات گيره نگهدارندهٔ آزمايش خمش.

شرکت کاوش همایش

٣-٣) ارزیابی نتایج

نتايج قابل قبول آزمايشات

Tension Test (QW-150) آزمایش کشش (۳-۳-۱

نمونه های آزمایش کشش (با سطح مقطع کاهش یافته) برای ورق و لوله مطابق با QW-462.1 تهیه و مطابق CW-462.1 ، نوع نمونه مشخص می گردد. نمونه های آزمایش کشش می تواند نمونه هایی با سطح مقطع کاهش یافته یا نمونه هایی با مقطع کامل باشد. لازم به ذکر است که فقط برای لوله هایی با قطر خارجی مساوی یا کمتر از ۳ اینچ نمونه هایی با مقطع کامل استفاده می شود.

آزمایش تا گسیختگی نمونهٔ تحت بار کششی ، ادامه می یابد. استحکام کششی از تقسیم حداکثر بار اعمالی به سطح مقطع نمونه قبل از بارگذاری ، بدست می آید.

معيار پذيرش أزمايش فوق بصورت زير است:

- ۱) استحكام كششى حاصله ، از حداقل استحكام كششى تعيين شده براى فلز پايه كمتر نباشد.
- ۲) دراتصال دو فلز پایه با استحکام های کششی مختلف ، استحکام کششی حاصله ، از حداقل استحکام
 کششی فلز پایهٔ ضعیف تر بیشتر باشد.
- ۳) در صورتیکه استحکام فلز جوش در دمای اتاق کمتر از فلز پایه باشد ، استحکام کششی حاصله ، از استحکام کششی فلز جوش کمتر نباشد.
- ۴) اگر نمونه آزمایش از فلز پایه ، در محلی خارج از خط جوش گسیخته شود ، آزمایش پذیرفته است.
 البته استحکام کششی نباید از 95 % حداقل استحکام کششی تعیین شده فلز پایه کمتر باشد.

7-7-7) آزمایش خمش (Guided - Bend Test (QW-160)

نمونه های آزمایش خمش با برش ورق یا لوله های نمونه جوشکاری شده بصورت نمونه هایی با مقاطع تقریباً مستطیل شکل ، بدست می آید. سطوح برش ، قسمت های جانبی نمونه را مشخص می کنند. دو سطح دیگر سطوح ریشه و سطحی (گرده) نامیده می شود. پهنای جوش در سطح (گرده) بیشتر است. ضخامت نمونه و شعاع خمش در QW-466.2 , QW-466.2 , QW-466.1 نشان داده شده است. نمونه های

شرکت کاوش همایش

۳-۳) ارزیابی نتایج

نتايج قابل قبول آزمايشات

Tension Test (QW-150) آزمایش کشش (۳-۳-۱

نمونه های آزمایش کشش (با سطح مقطع کاهش یافته) برای ورق و لوله مطابق با QW-162.1 تهیه و مطابق CW-162.1 ، نوع نمونه مشخص می گردد. نمونه های آزمایش کشش می تواند نمونه هایی با سطح مقطع کاهش یافته یا نمونه هایی با مقطع کامل باشد. لازم به ذکر است که فقط برای لوله هایی با قطر خارجی مساوی یا کمتر از ۳ اینچ نمونه هایی با مقطع کامل استفاده می شود.

آزمایش تا گسیختگی نمونهٔ تحت بار کششی ، ادامه می یابد. استحکام کششی از تقسیم حداک ثر بار اعمالی به سطح مقطع نمونه قبل از بارگذاری ، بدست می آید.

معیار پذیرش آزمایش فوق بصورت زیر است :

- ۱) استحکام کششی حاصله ، از حداقل استحکام کششی تعیین شده برای فلز پایه کمتر نباشد.
- ۲) دراتصال دو فلز پایه با استحکام های کششی مختلف ، استحکام کششی حاصله ، از حداقل استحکام
 کششی فلز پایهٔ ضعیف تر بیشتر باشد.
- ۳) در صورتیکه استحکام فلز جوش در دمای اتاق کمتر از فلز پایه باشد ، استحکام کششی حاصله ، از استحکام کششی فلز جوش کمتر نباشد.
- ۴) اگر نمونه أزمایش از فلز پایه ، در محلی خارج از خط جوش گسیخته شود ، آزمایش پذیرفته است.
 البته استحکام کششی نباید از 95 % حداقل استحکام کششی تعیین شده فلز پایه کمتر باشد.

7-٣-٢) آزمايش خمش (Guided - Bend Test (QW-160)

نمونه های آزمایش خمش با برش ورق یا لوله های نمونه جوشکاری شده بصورت نمونه هایی با مقاطع تقریباً مستطیل شکل ، بدست می آید. سطوح برش ، قسمت های جانبی نمونه را مشخص می کنند. دو سطح دیگر سطوح ریشه و سطحی (گرده) نامیده می شود. پهنای جوش در سطح (گرده) بیشتر است. ضخامت نمونه و شعاع خمش در QW-466.2 , QW-466.2 , QW-466.1 نشان داده شده است. نمونه های

شرکت کاوش همایش

خمش با توجه به حالت محور جوش و محور نمونه نسبت به هم (عرضی یا طولی) و سطح خارجی (محدب) نمونهٔ خمش (ریشه، سطحی(گرده)، جانبی) به پنج دسته تقسیم می شود. نوع نمونهٔ آزمایش مطابق با 16۱-QW تعیین می شود.

نحوه انجام آزمایش باید مطابق با QW-162 باشد. در ضمیمه <u>۱۵</u> نمونه از گیرهٔ نگهدارنده آزمایش خمش دیده می شود.

معیار پذیرش آزمایش فوق بصورت زیر است:

- ۱) ناپیوستگی سطحی بزرگتر از 3.2 میلی متر در هر جهتی روی سطح خارجی (محدب) نمونه پس از خمش در منطقه جوش یا منطقه متاثر از حرارت (.H.A.Z) پذیرفته نیست.
- ۲) برای روکش های جوشی مقاوم به خوردگی حداکثر ناپیوستگی سطحی مجاز در روکش در هـر
 جهت ۱.6 میلی متر و حداکثر ناپیوستگی سطحی مجاز در مرز اتصال 3.2 میلی متر است.
- ۳) ناپیوستگی های سطحی که در گوشه های نمونه در حین آزمایش بوجود می آیند ، قابل صرفنظر کردن هستند مگر اینکه ناپیوستگی ها ناشی از ذوب ناقص ، آخالهای سرباه محبوس شده در جـوش یا دیگر عیوب داخلی باشند.

 یا دیگر عیوب داخلی باشند.

۳-۳-۳) آزمایش ضربه (RW-170) Www.

در صورت نیاز آزمایش ضربه با نمونه های ضربه با شیار (V) مطابق با استاندارد SA-370 انجام میشود. معیار پذیرش نتایج آزمایش ضربه مطابق با استاندارد و بخش هایی است که انجام این آزمایش را ضروری دانسته اند.

۳-۳-۴) آزمایش ماکرواچ Macroetch Test

برای تایید کیفیت نمونه ماکرواچ شده از طریق بازرسی چشمی نکات زیر را باید لحاظ کرد:

- ۱) در جوشهایی با اتصال شیاری و نفوذ جزئی ذوب باید تا ریشه اتصال انجام شده باشد.
 - ۲) در جوشهای گلویی باید ساق جوش مؤثر وجود داشته باشد.
 - ۳) حداقل پای جوش گلویی باید به اندازه مشخص شده جوش باشد.

شرکت کاوش همایش

- ۴) جوشهای شیاری با نفوذ جزئی و جوشهای گلویی باید حائز شرایط زیر باشند:
 - ۱-۴) ترک در مقطع مشاهده نشود.
- ۲-۲) بین لایه های مختلف جوش ، فلز پایه و فلز جوش ذوب کافی صورت گرفته باشد.
 - ۴-۳) شکل جوش مطابق طرح اتصال باشد.
- ۴-۴) سوختگی کناره جوش غیرمجاز در مقطع جوش دیده نشود (بیش از ۱ میلی متر) .
 - ۴-۵) برای تخلخل ۱ میلی متر یا بزرگتر ، جمع تخلخل بیش از ۶ میلی متر نباشد.
 - ۴-۶) جمع سرباره بیش از ۴ میلی متر نباشد.

لازم بذکر است که در بخش QW-470 مواد و محلولهای اچ ذکر شده است.

NonDestructive Test (اولتراسونیک – رادیوگرافی) آزمایش غیرمخرب اولتراسونیک – π

نحوه انجام آزمایش رادیوگرافی مطابق با قسمت 19۱-QW خواهد بود . معیار پذیبرش نیز مطابق با QW-19۱ است. بخش ۶ از استاندارد AWS, D1.۱ ، به آزمایشات غیرمخرب می پردازد.

۷-۳-۶) بازرسی چشمی لوله ها و مقاطع توخالی Visual Inspection of Pipe

لولهٔ جوشکاری شده در صورتی پذیرفته است که:

- ۱) جوش باید عاری از ترک باشد.
- ۲) سطح جوشها باید با دیوارهٔ خارجی لوله برخورد داشته باشد.
- ۳) حداکثر اندازه سوختگی کناره جوش مجاز در جوش 0.4 میلی متر است.
- ۴) ریشه جوش باید بازرسی شده و عاری از ترک باشد. ذوب ناقص و نفوذ غیرکافی نیز قابل صرفنظ رکردن نیست.
 - ۵) حداکثر تعقر مجاز پاس ریشه ۱.6 میلی متر و حداکثر ذوب واقعی مجاز 3.2 میلی متر است.

۷-۳-۷) آزمایش مجـدد

در صورتیکه نتایج نمونه های تهیه شده در یک آزمایش جوابگوی کیفیت جوش نباشد ، باید دو سری دیگر از نمونه های آزمایش با همان مواد تهیه شده و نتایج هر دو سری پاسخگوی کیفیت جوش باشند.

شرکت کاوش همایش

۳-۴) ثبت و تایید نتایج

پس از تعیین نتایج آزمایشات ، مشخصات فرایند تهیه نمونه و نتایج آزمایشهای تعییی کیفیت باید در فرم خاصی با عنوان گزارش کیفیت روش جوشکاری Procedure Qualification Record (PQR) ثبت شده وپس از مطالعه نتایج آزمایشات ، مورد تایید قرار گیرد.

ASME . Sec IX (QW-483) در ضمیمه شماره \underline{T} نمونه آخرین فرم PQR پیشنهادی در استاندارد (\underline{T} نمونه آخرین فرم نشان داده شده است.

همانطور که در این ضمیمه دیده می شود ، فرم PQR دو صفحه ای است. در صفحه اول PQR ، اطلاعات و پارامترهای لازم برای انجام فرایند جوشکاری ذکر می شود که نحوه تنظیم آن همانند نحوه تنظیم فرم WPS است. به عبارت دیگر در صفحه اول اطلاعاتی نظیر : روش جوشکاری ، طرح اتصال ، فلز پایه ، فلـز پرکننده ، وضعیت جوشکاری ، پیشگرم و ذکر می گردد.

در صفحه دوم فرم PQR نتایج آزمایشات کشش ، خمش ، ضربه و در صورت نیاز دیگر آزمایشات نظیر سختی سنجی ، آنالیز شیمیایی و درج و تائید می گردد.

الف) اطلاعات حاصل از آزمایش کشش براساس کد QW-150 درج می گردد.

برای تفکیک نمونه های آزمایش ، نمونه ها شماره گذاری شده و در ستون اول جدول نوشته مــی شـود. پهنای نمونه های کشش تخت و یا قطر نمونه های کشش استوانه ای از روی نمونه ها اندازه گیری شـده و در ستون دوم جدول درج می گردد.

ضخامت نمونه های تخت که مطابق استاندارد تهیه شده اند ، به طور دقیق اندازه گیری و در ستون سوم جدول نوشته می شود.

براساس ضخامت و پهنای نمونه که در جدول ذکر شده ، مساحت سطح مقطع نمونه کشش در ستون چهارم نوشته می شود.

در ستون پنجم جدول ، حداکثر بار وارده قبل از شکست نمونه ذکر می گردد. درج واحد بار نیز الزامیست.

در ستون ششم ، تنش کششی که از تقسیم حداکثر بار وارد بر مساحت سطح مقطع (اطلاعات مندرج در ستونهای چهارم و پنجم جدول) نوشته می شود. ذکر واحد تنش نیز ضروریست.

در ستون هفتم به مشخصات نحوه شکست و محلی که شکست در نمونه رخ داده ، اشاره می شود.

شركت كاوش همايش

ب) اطلاعات حاصل از آزمایش خمش براساس کد QW-160 درج می گردد.

در ستون اول ، نوع و شمارهٔ نمونه آزمایش خمش اعم از نوع ریشه ای ، جانبی یا سطحی (گرده ای) در این قسمت با توجه به کد QW-462 ذکر می شود.

در ستون دوم ، نتایج حاصل از آزمایش خمش به یکی از اشکال زیر درج می گردد :

- Acceptable (\
- Satisfactory (Y
- No deffect (T
 - Good (F

ج) اطلاعات حاصل از آزمایش ضربه براساس کد QW-170 در این قسمت درج می گردد.

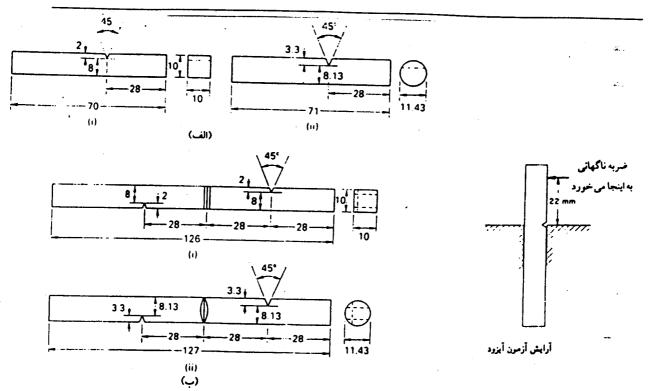
در ستون اول ، شماره شناسایی نمونهٔ آزمایش نوشته می شود.

محل قرار گرفتن شیار نمونه ضربه در ستون دوم درج می شود. شیار می تواند در فلز جوش ، منطقه متأثر از حرارت ، مرز بین فلز جوش و فلز پایه و یا فلز پایه قرار داشته باشد که معمولاً با علائیم اختصاری .B.M. ، W.B. ، H.A.Z. ، W.M نوشته می شود.

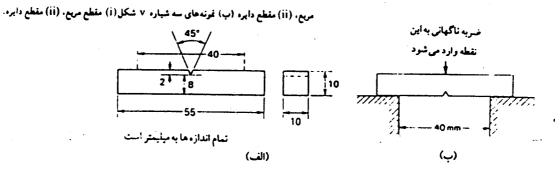
در ستون سوم جدول ، نوع شیار نمونه ضربه ذکر می گردد. شیار ممکن است چارپی (Charpy) ، ایــزود (Isod) ، سوراخ کلیدی (Key hole) بوده و یا نمونه بدون شیار باشد.

در شكل ٧ انواع شيارها و اندازه نمونه ضربه ديده مي شود.

درجه حرارت آزمایش در ستون چهارم جدول نوشته می شود.


در ستون پنجم جدول ، مقدار انرژی ضربه عمدتاً بر حسب پوند بر فوت (lb-ft) یا ژول درج می گردد. سطح مقطع شکست نمونه ضربه از دو ناحیه ترد و نرم تشکیل شده است. معمولاً سطح مقطع شکست ترد صاف و براق و سطح مقطع شکست نرم دارای پستی – بلندی و کدر است. با اندازه گیری نسبی این دو سطح ، درصد هر یک از مکانیزم های شکست (نیرم یا ترد) مشخص می شود. این مقادیر در ستونهای ششم و هفتم جدول نوشته می شود.

در دستگاههای قدیمی از وزنه های مختلفی برای آزمایش ضربه استفاده می شد. (ASTM E208).وزن نمونه ها در ستون هشتم جدول درج می گردد.



كروه مهندسين بين المللى جوش ايران

شركت كاوش همايش

ابعاد غرنه های آزمایش آبزود. والف) غرنه های تك شیاره ۷ شكل (i) مقطع

(الف) اندازه های فرند آزمایش شاریی برای فلزها (ب) نحره استقرار فرند آزمایش . شکل ۷ مشخصات شیار و نمونه های ضربه .

د) اطلاعات حاصل از آزمایش جوش گلویی براساس کد QW-180 در این قسمت درج می گردد. نمونه های لازم مطابق با کد QW-462.4 تهیه می شود.

در صورت رضایتبخش بودن – نتیجه آزمایش جوش گلویی در قسمت Result- Satisfactory علامت زده می شود.

نتیجــهٔ مشاهــدهٔ نمونــهٔ ماکـــرواچ شــده درمــورد نفــوذ جــوش بـه فلــز پـایــه درقســمت Macro – result علامت زده شده و دیگر موارد مشاهده شده در قسمت Penetration into Parent Metal درج میشود.

شرکت کاوش همایش

ه) در برخی موارد آزمایشهائی چون سختی سنجی در مناطق فلز جوش (.W.M.) ، فلز پایه (.B.M.) یا مرحل موارد آزمایشهائی چون سختی سنجی در مناطق فلز جوش (.W.M.) ، فلز پایه (.B.M.) یا آزمایشهای غیرمخرب نیز باید انجام پذیبرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (.H.A.Z.) یا آزمایشهای غیرمخرب نیز باید انجام پذیبرد.در قسمت نوع آزمایش منابع فلیز جوش می شود. آنالیز شیمیایی فلیز جوش ممکن است جزء موارد مورد نیاز باشد. در این صورت ترکیب شیمیایی فلز جوش در قسمت آنالیز فلیز رسوب داده شده Deposit Analysis درج می گردد.

هر گونه اطلاعات و آزمایشات اضافه در قسمت دیگر موارد Other نوشته می شود.

و) اطلاعات تكميلي :

جوشهای سازه در صورتی مورد تائید است که جوشکار آن همان جوشکار PQR باشد، لذا ذکر نام جوشهای سازه در صورتی مورد تائید است که جوشکار نمونهٔ آزمایش در این قسمت الزامیست. مواردی چون شماره پرسنلی و درجه کیفیت کار جوشکار نیز در PQR نوشته می شود. نام تنظیم کننده آزمایش و شماره گزارش آزمایشات نیز در PQR درج می گردد . تنظیم کننده PQR نهایتا با ذکر تاریخ گزارش کیفیت روش جوشکاری را امضاء می کند.

۵-۳) نكات لازم در نوشتن PQR (محدوديت متغيرها)

جهت کاهش هزینه و زمان ناشی از آزمایشات تعیین کیفیت لازمست تـا محـدوده ای بـرای متغیرهـای PQR در نظر گرفته شود. بدیهی است تغییر هر یک از متغیرها در خارج از محدودهٔ تعریف شده ، منجــر به نوشتن PQR , WPS جدید می شود.

براساس QW-200 هر تولید کننده موظف به ارائه WPS جهت مشخص کردن روش جوشـکاری (WPS) است و هر WPS باید به کمک آزمایشهای کنترل کیفی (PQR) ، تائیدیه کیفیت دریافت کند. پس هـر PQR به یک PQR نیاز دارد. اما با توجه به نکات کد QW-252 تا QW-262 امکـان تنظیم یـک PQR برای تضمین کیفیت چندین WPS وجود دارد . در جـداول کد QW-262 تا QW-252 ، امکـان تغییر (افزایش یا کاهش) هر یک از متغیرهای اساسی ، تکمیلی و غیراساسی فرایندهای مختلـف جوشـکاری مورد مقایسه قرار گرفته است. لازم به ذکر اسـت در کـد QW-200 تـا QW-218 مطـالبی کـه بـاید در نوشتن و استفاده از PQR مد نظر قرار داد ذکر شده است.

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

همچنین برای کاهش تعداد PQR ها در استاندارد ASME, Sec IX در بخش PQW-424 توصیه های مفیدی برای استفاده از یک PQR با فلز پایه و عدد مشخصهٔ P معین در میورد فلزات دیگر ارائیه شده است. به عنوان مثال در صورتی که عدد مشخصهٔ P فلزات پایه مورد استفاده در PQR هیر دو ۳ باشد، این PQR را برای تایید WPS هایی که عدد مشخصهٔ P یکی از فلزات ۳ و عدد مشخصهٔ P فلز دیگر ۳ یا ۱ است، میتوان استفاده کرد. البته دیگر پارامترهای ضروری نیز باید در PQR و WPS مطابقت داشته باشد. (ضمیمه ۱۶)

فص*ل پھارم* ضمانم

محروه مهندسين بين العللي جوش ايران

شرکت کاوش همایش

NONMANDATORY APPENDIX B

QYV-482

SITIONS			/		3/3/3/3	WPS No.	CALT 1000 100	Rev.
	(QW-405)	F/a+- Hor-	v 2y = 07	the start	POSTWELD H	RANGE	LAC	ستحرارة المتحاس
Malaina Pri	ooression. Up		Down		Time Range.	-		
Position(s)	of Fillet de	-1 - 0 - W	بإتحداب	Lary				
			5	,	GAS (QW-408	ا ا ما	Percent Co	moosition
REHEAT (9	4	Gas(es)	Percent Co	ture) Flow Rate
مرزاته 💂	Man 5 0	/ <u>*** </u>	مداريم الله	150 pt	250	2//	44.5	10-15 mi
enect Ma	طتک intenance	ting where applie	cable should i	he recorded)	Shielding (Trailing	- C - L A	97	XAV+3/0:
					Backing Um	<i>ؽٳۺڗؠٷ</i> ۄ؞	<u> مان کردید ہے</u>	
		روي يا شير.	ASME	(العشد) دیا	لوكما برب ربده	باتوس سهة إ		
		Po						•
Amps (Ran	ige)	Voits ((Range)			٠.	20.2	
(Amps ar	nd voits ranço	should be recored. This information	ded for each	electrode size,		•	· Sale	
	and thickness, o amiliar to that					**** <u>*</u>	•	
		_ ^		1105 . *		18 (),00	والمرابعة	
Tungsten E	lectrode Size an	d Type	11-14 (E)) Jos. 9	(Pure Tungson,	2% Thoriered	etc.)	
Mode of Me	etal Transfer for	GMAW	دلے تعال	فير	Spray are snort		A*C :	
			144		Spray arc, snoct	seneuiting are	, 016 1	
Electrode V	Vire feed speed	range						
CHNIQUE	E_IQW-4101							
String or W	eave Bead			MICLIC	110	Cathon	<u> </u>	
String or W	eave Bead	(14		MICHTE	- 1m	CETAW	\$	
String or W	eave Bead				- m	CATAW	₫	
String or Wi Orifice or G Initial and I	Sas Cup Size Interpass Cleans Back Gouging	(1) c ng (Brushing, Gr	inding, etc.)_		- m	CETAW	∜	
String or Wi Orifice or G Initial and I Method of I	eave Bead	() ¿ ng (Brushing, Gr	inding, etc.)_	9 6/1V		CATAW	7	
String or Wi Orifice or G Initial and I Method of I Oscillation	eave Bead	ng (Brushing, Gr	rinding, etc.)_	(20-3am		CETAN	*	
String or Wi Orifice or G Initial and I Method of I Oscillation_ Contact Tui Multiple or	Back Gouging	ng (Brushing, Gr	rinding, etc.)	(20-30x		Cothw Cothw Cothward	***	
String or Wi Orifice or G Initial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Multiple or Travel Spee	leave Bead	ng (Brushing, Gr	rinding, etc.)	(20-30x		Cathward Cat	***	14 (1,15)
String or Wi Orifice or G Initial and I Method of I Oscillation Contact Tui Multiple or Multiple or Travel Spee	Back Gouging	ng (Brushing, Gr	rinding, etc.)	(20-30x		CETAW CETAW CANCOL		et 5° (14 (1, 1-1
String or Wi Drifice or G Initial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Multiple or Fravel Spee	Back Gouging	ng (Brushing, Gr	rinding, etc.)	(20-30x		Cathwar Cathwa		de (14 (1,10)
String or Wi Drifice or G Initial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Fravel Spee	Back Gouging	ng (Brushing, Gr	rinding, etc.)	(20-30x		CETAW CETAW CETAW CETAWA		at 5 (144 (1, 1 - 1
String or Wi Drifice or G Initial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Fravel Spee	Back Gouging	ng (Brushing, Gr	inding, etc.)_	(20-30m		CETAW CETAW CANCOL CANC	7	
String or Wi Drifice or G Initial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Fravel Spee	Back Gouging	ng (Brushing, Gr	inding, etc.)_	(20-30m	Multipli	CETAW CATAW		Other le.g., Remarks, Com-
Biring or Wi Drifice or G nitial and I Method of I Oscillation, Contact Tui Multiple or Multiple or Fravel Spee	Back Gouging	ng (Brushing, Gr	inding, etc.)_	(20-30m	Multipli	CETAW CETAW	Travel	Other
or Weid Weid Weid Weid Weid Weid Weid Weid	Back Gouging	riller	Metal	(20-30m (20-30m (Cu	rrent Amp.	Volt	Travel Soeed	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
String or Williams or Williams or Williams or Williams or Grant Tunders or Travel Societing Control Co	Back Gouging	ng (Brushing, Gr	inding, etc.)_	(20-30m	Mu — o i a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Travel	Other le.g., Remarks, Com- ments, Hot Wire
String or Wi Drifice or G nitial and I Method of I Oscillation_ Contact Tur Multiple or Multiple or Fravel Spee Pening	Back Gouging	riller	Metal	Cu Type Polar. DC E-N	rrent Amp. Range	Voit Range	: Travel : Soeed : Range	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
String or Williams or Williams or Williams or Williams or Grant Tunder or Travel Societies or Travel Socie	Process	Filter Class SR7-0 S-C	Metal Dia 2.4	Cu Type Polar.	rrent Amp.	Volt	Travel Soeed	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
or Weid Weid Weid Weid Weid Weid Weid Weid	Back Gouging	riller	Metal	Cu Type Polar. DC FN (CC SP)	Amp. Range	Voit Range 7-13	Travel Speed Range	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
Weid aver(s)	Process SM A W	Filler Class FR705-C	Metal Dia 2.4	Cu Type Polar. OC EN (CCSP)	Amp. Range 80-160	Voit Range	: Travel : Soeed : Range	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
Weid averts)	Process	Filter Class SR7-0 S-C	Metal Dia 2.4	Cu Type Polar. DC FN (CC SP)	Amp. Range 80-160	Voii Range 7-13	Travel Speed Range	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
Weid averts)	Process SM A W	Filler Class FR705-C	Metal Dia 2.4 4.0	Cu Type Polar. DC EN (CC SP) DC CP (DC RP)	Amp. Range 80-160 110-150 150-200	Voil Range 7-13	Travel Speed Range 5 10 10 - 20	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
Weid averts!	Process GTA W S M A W	Filler Class FR705_C	Metal Dia 2.4 4.0	Cu Type Polar. DC EN (CCSP) DC EP (DC RP)	Amp. Range 150 - 200	Voil Range 7-13 18-22 19-25 13-22	Travel Speed Range 5 10 10-20 10-20	Other le.g., Remarks, Comments, Hot Wire Addition Technique,
String or Williams or Williams or Williams or Grant or Grant of Method of Discillation. Contact Turkuitiple or Austriple or Austriple or Fravel Speed	Process From Bead Fr	Filler Class FR705_C	Metal Dia 2.4 4.0	Cu Type Polar. DC EN (CC SP) DC CP (DC RP)	Amp. Range 80-160 110-150 150-200	Voil Range 7-13 18-22 19-25 13-22	Travel Speed Range 5 10 10 - 20	Other le.g., Remarks, Comments, Hot Wire Addition Technique,

حق جاب و تکثیر . محفوظ و متعلق به شرکت کاوش همایش می باشد

مروه مهندسین بین العللی جوش ایران میندسین بین العللی جوش ایران

QW-482

F-No. (2) A-No. VI Size of Filler Metals Weld Metal Thickness Range: Groove _ Fillet_ Electrode-Flux (Class).

Flux Trade Name .

Consumable Insert Other State of

ADD

گرمت محروه مهندسین بین العللی جوش ایران پنولس ۱۰۰	Warsspar we our	شرکت کاوش همایش
?₩- 48 2	1998 SECTION IX	WAS WAS
QW-482 SUGGESTED FO (See QW-200.1,	ORMAT FOR WELDING PROCEDU Section DX, ASME Boiler and Pro	URE SPECIFICATIONS (WPS)
Company Name		0 .0.
Welding Procedure Specification No.	Dete	Supporting POR No.(s) 15 30 y 11 (C)
Welding Process(es)	Type(s)	(Automotic Manual Machine, or Sarti-Auto.)
JORATS (QW-402)	= ichB. PU= 1. SMAW_ NiA	Details .
Saction Meterial (Tune)	de 10 10 000 1 1 - C	TAW. NA 2. TAW Chys
flefer to both bed	ching and regimers.)	- Che park Till
☐ Metal ☐ Nonfusing Metal		• C = Mark.
☐ Normetallic ☐ Other	✓	PARK SCOTT
applicable, the root spacing and the details of specified. (At the option of the litter, statches may be attendeding, weld layers and beed sequence, e.g., for no durse, for multiple process procedures, etc.)	ached to Illustrate join	(PL.+sp)
*BASE METALS (OW-403)	1	
P-No. Group No. 101	P-No	
OR A TWO = 2 TM		
to Specification type and grade		
OR OR	C. Line Car	-10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
Chern. Analysis and Mech. Prop	The miles of the	contrarible - ()
to Chem. Analysis and Mech. Prop.]	- b frog is
Thickness Range: Base Metal: Groove 70-30 W	Y) hry Fillet	5-10 hour + Total
Other Many Transfer Company	16-12-16-16-16-16-16-16-16-16-16-16-16-16-16-	
*FILLER METALS (QW-404)	0 -	- P-
Spec. No. (SFA) 5.1 (5 000) 000	wing war or Uly - 13	5 Soll Chica, The
AME No IClosel	5 2/ 5 - 25/ E72	13 4
FNo. (2) 6 8 6 6 1	Elmonion ne als	
A.Ma V() + 1:2 + 1:2 + (a. a. 31 1:2	1 11 21 1421 1 11 11	

*Each base metal-filler metal combination should be recorded individually.

This form (ECCOS) may be obtained from the Order Dept., ASME, 22 Liw Drive, Box 2300, Fairfield, NJ 07007-2300

	ضمیمه ۱		

معلم معرام مراسم از

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

NONMANDATORY APPENDIX B

QW-483

	ن الشرائع المسائل الم	مهاج تشريع		W-483 (B		POR M	o
			Ton	oile Test (Cl	W-1 5 8)	run in	
Specimen				-	Ultimate Total Load	Ultimate Unit Stress	Type of Febure &
No.	Width	Thickn	415	Area	lb_	pei	Location
				<u> </u>			10 0 = 10 ps
		 					72635
	- 	-				1	
is he u he		-52	- E Gulde	d-Bend Tests (QW-160)		
	Type and Fig	ure No.			!	Result	
		<u></u>			Accep+		·
					NOT FREER	1- 1	
						1	
			····			Y	
		م و تفار	Tours	hness Tests (C	W-170)	V	
		U 1/2		144 5	/CE	▼	
Specimen	Notch	Specimen	Test		Import Values		
No.	Location	Size	Temp.	Ft. ibs	/ Shear	Mils C	Prop Weight Break (Y/N)
			•		Y		•
			_			 	
				14		 	
					<u> </u>	 	
			13			 	
			Y_	ļ <u> </u>			
			1			ļ	
				1		L	
omments:							
			En.	-Weld Test (Q)	W-180)		
			Piliet		, v = 1,007		
ecult Settefactory	: Yes	No_		Pen	etration into Parent M	lotal: Yes	Ne
•					النور ورا نافر كي س		
acro — Resulta	212 - C.	(, , , , ,)	بور (جم <i>ينة حر</i>	م رکامی	<i>I</i>		
	و سر	11 -		Other Test	•		
			,	vuier i esu	•		
voe of Test							
sposit Analysis						 	
ther							•
				,			
		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
init els Name					Clock No		_Stamp No
ests conducted by:					Laborate	ory Test No	
e certify that the	statements in this	record are c	orrect and th	hat the test	welds were prepared	d, welded, and test	ed in accordance with th
quirements of Sec	tion IX of the ASM	IE Code.					
				Manufact	urer		
-							

حروه مهندسين بين المللي جوش ايران

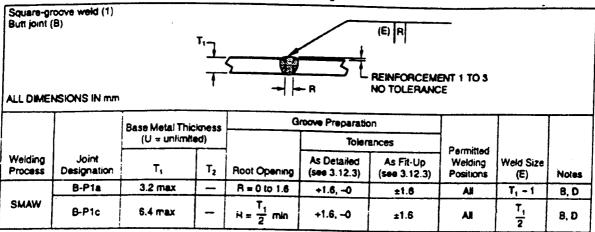
شرکت کاوش همایش

QW-483

1998 SECTION IX

(266 C	SESTED FORMAT FOR W-200.2, Section IX, Record Actual Condi	ASME Boiler and I	Drage \/-	and Cadal	QR)
Company Name					
Procedure Qualification Record No.	- PAP	<u>شم) رن</u>	Date		
WPS No	£. 6				
Welding Process(es)	5.6.1	· · · · · · · · · · · · · · · · · · ·			
Types (Manual, Automatic, Semi Au	110)				
JOINTS (QW-402)	En Gazbia	3			
	.•				
	•.				
					ē
	•				
		•			
		•	, 4 <u>6</u> 3		
			<u>.</u>		
		· • • • • • • • • • • • • • • • • • • •			
			., ,		
			<i>.</i>		
	Gran	ve Design of Test Coupen	•		
(For compination ou	autications, the deposited well		Accorded for each		
BASE METALS (QW-403)					iss used)
Material Spec.		POSTWELD HE			
Type or Grade		Temperature		······································	
	to P-No	Time	····		
Thickness of Test Coupon		Other			
		— <u> </u>			
Other 10 Test Coupon					
Other	/				
		GAS (QW-408)		Percent Composition	
			Gastes-	-Mixture	F ow Rate
					- OW Nate
		Shielding			
FILLER METALS (QW404)	*************************************	Trailing			
	i i	Backing			
SFA Specification					
		- ELECTRICAL CH	ARACTERIST	CS QW-409.	1
Filler Metal F-No.		Current			
Weld Metal Analysis A-No.		Polarity			
Size of Filler Metal				Voits	
Other		Tungsten Electrod	e Size		
Weld Metal Thickness		ľ			
		- 		·	
POSITION (OW-405) CHE P	hi fillet milchs	75011110115			
Position of Groove Qw 451.4	وسِين بيم	TECHNIQUE IQW	= -		
Weld Progression (Uphill, Downhill)					
Other					
					
ARENEAT IOW ACC					
PREHEAT (QW-406)		Other			
Preheat Temp		-			
Interpess Temp		-	-		
Other		— I ————			
		-			
This	form (E00007) may be obtained	ed from the Order Dept At	SME 22 Law De-	ve Box 2300 5	M N 102002 2222
	, , , , , , , , , , , , , , , , , , , ,			2300, PBIMIQ	w. nu 0/007-2300

ضمیمه ۲


گروه مهندسین بین التالی جوش ایران/ ۱۳۲۹

دوره اموزشی

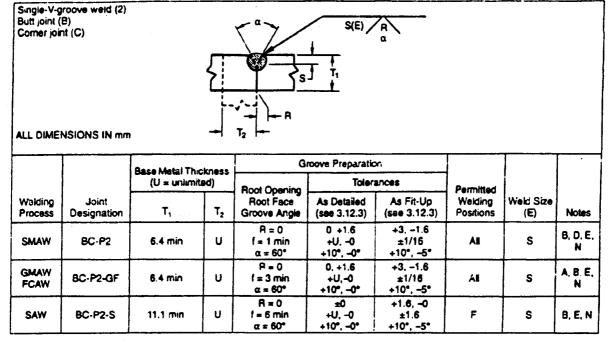
STD.AWS D1.1-ENGL 1998 ## 0784265 0508506 T49

Prequalification of WPSs/59

See Notes on Page 88



Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)


ſ	
ı	ضمیمه ۳
L	

E CAP FOCADCO 24548FD SPEL 1903-1.10 244.012

60/Prequalification of WPSs

See Notes on Page 85

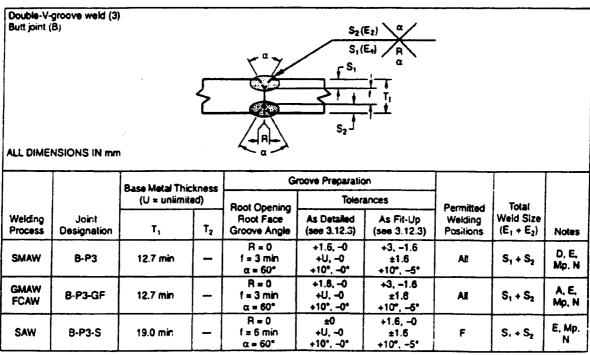
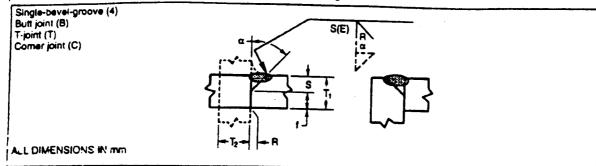



Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

STD.AWS D1.1-ENGL 1998 - 0784265 0508508 811 -

Prequalification of WPSs/61

See Notes on Page 86

	Joint Designation	Base Metal Thickness (U = unlimited)		Groove Preparation					
Welding Process				Root Opening	Tolerances		1		
		т,	T ₂	Root Face Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Weld Size (E)	Notes
SMAW	BTC-P4	U	U	R = 0 f = 3 min α = 45°	+1.6, -0 unlimited +10°, -0°	+3, -1.6 ±1.6 +10°, -5°	AI	S-3	B, D, E, J, N, V
GMAW	BTC-P4-GF	6.4 min	U	R = 0 1 = 3 min	+1.6, -0	+3, -1.6	F, H	S	A, B, E, J, N, V
FCAW	BICFFGF	0.4 /////		α = 45°	unlimited +10°, -0°	±1.6 +10°, -5°	V, OH	S-3	
SAW	TC-P4-S	†1 .1 min	U	R = 0 f = 6 min α = 60°	±0 +U, -0 +10°, -0°	+1.6, =0 ±1.6 +10°, =5°	F	s	8, E, J, N, V

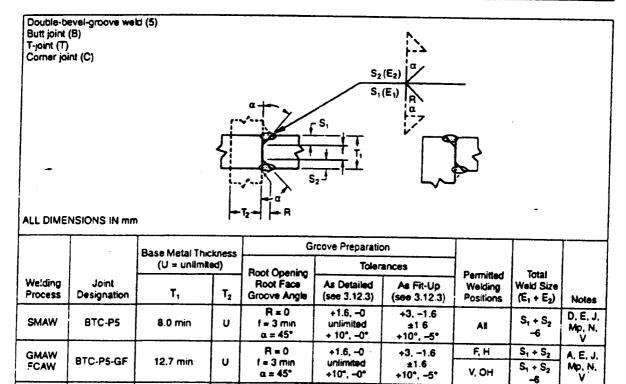


Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

±0

+U, -0

+100, -00

+1.6, -0

F

±1.6 +10°, -5° E. J.

Mp, N,

S, + S2

R=0

f = 6 min

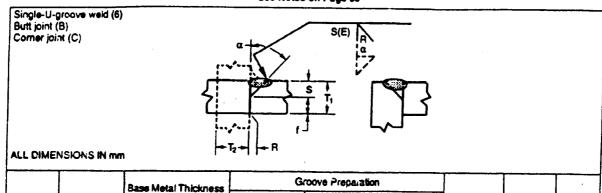
 $\alpha = 60^{\circ}$

SAW

TC-PS-S

19.0 min

U


ضميمه ٣	
ورہ اموز شی گروہ مہندسین بین النالی جوش ایران/ ۱۲۲۸ مہندس ٹیما هنرسلایان	•

STD.AVS D1.1-ENGL 1998 ### 0784265 0508509 758

62/Prequalification of WPSs

See Notes on Page 68

Welding Process	Joint Designation	Base Metal Thickness (U = unlimited)		Groove Preparation					
				Root Opening	Tolerances		1		
		т,	Т2	Root Face Groove Radius Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Weld Size (E)	Notes
SMAW	BC-P6	6.4 min	U	R = 0 f = 1 min r = 6 α = 45°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +1.6 +10°, -5°	Ali	s	8, D, E
GMAW FCAW	BC-P6-GF	6.4 min	U	R = 0 f = 3 min r = 6 α = 20°	+1.6, -0 +U, -0 +60 +10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	All	s	A, 3, E, N
SAW	BC-P6-S	11.1 min	U	R = 0 f = 6 min r = 6 a = 20°	±0 +U, -0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	s	B. E. N

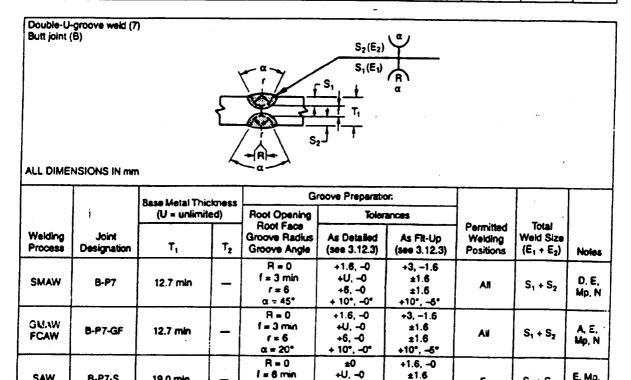


Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

r = 6

a = 20°

B-P7-S

19.0 min

SAW

+6. -0

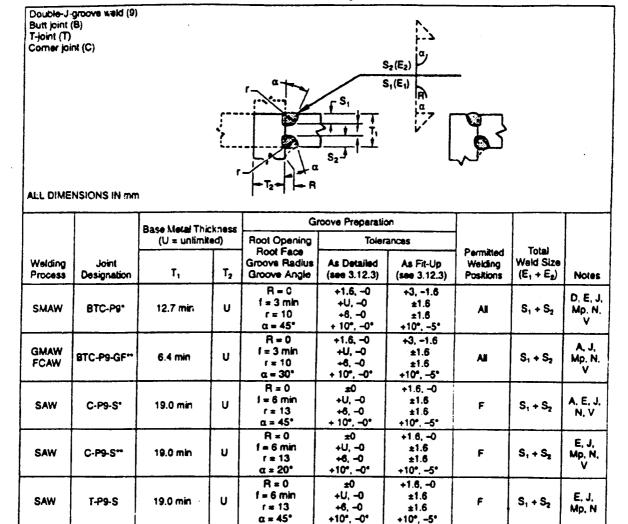
+10*, -0*

±1.6

+10°, -5°

E, Mp,

S1 + S2


F

\-

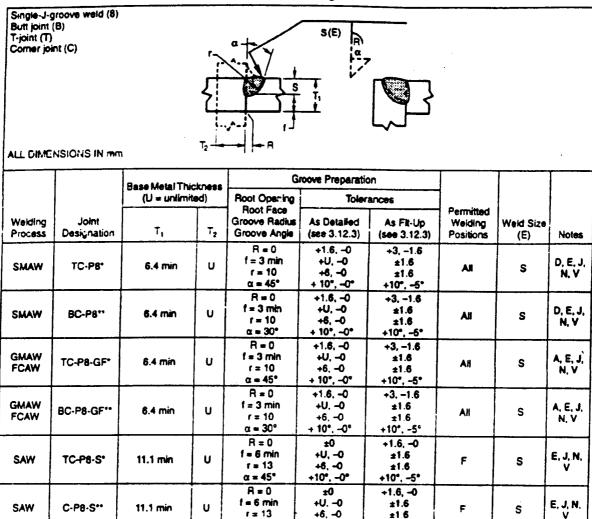
40E 1128020 2454870 ### 8PP1 JON3-1.10 2WA.072

64/Prequalification of WPSs

See Notes on Page 88

Applies to inside comer joints.

Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)


	ضمیمه ۳	
·	••	

^{**}Applies to outside corner joints.

STD.AWS D1.1-ENGL 1998 3 0784265 0508510 47T

Prequalification of WPSs/63

See Notes on Page 88

^{*}Applies to inside comer joints.

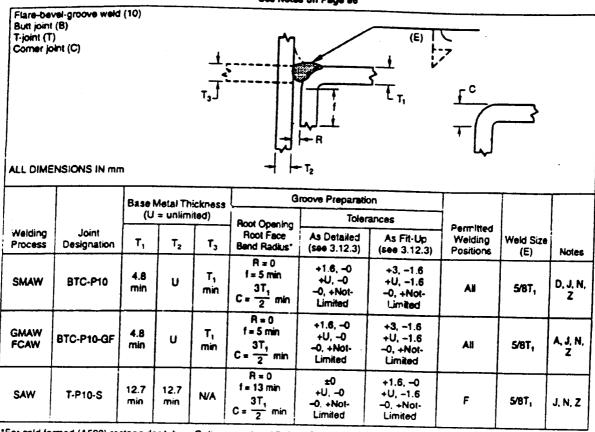
Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

+10°, -0°

+10°, -5°

 $\alpha = 20^{\circ}$

^{**}Applies to outside corner joints.


1

شركت كاوش همايش

STD.AWS D1.1-ENGL 1988 TO 0784265 D508512 242

Prequalification of WPSs/65

See Notes on Page 88

^{*}For cold formed (A500) rectangular tubes, C dimension is not limited. See the following:

Effective Weld Size of Flare-Bevel-Groove Welded Joints. Tests have been performed on cold formed ASTM A500 material exhibiting a "c" dimension as small as T₁ with a nominal radius of 2t. As the radius increases, the "c" dimension also increases. The corner curvature may not be a quadrant of a circle tangent to the sides. The corner dimension, "c", may be less than the radius of the corner.

Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

AM	
ضمیمه ۳	

حروه مهندسین بین المللی جوش ایران

شرکت کاوش همایش

ELEADED 2454870 E 8PPL 19N3-1.10 2WA. 012

66/Prequalification of WPSs

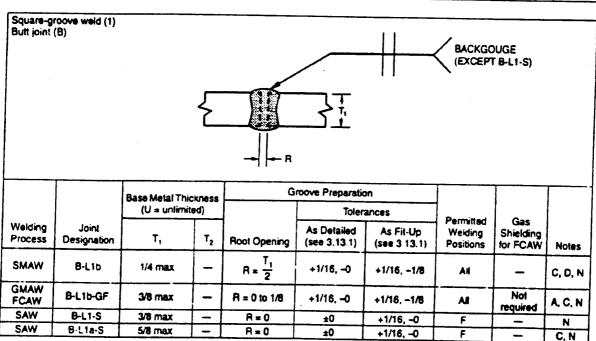
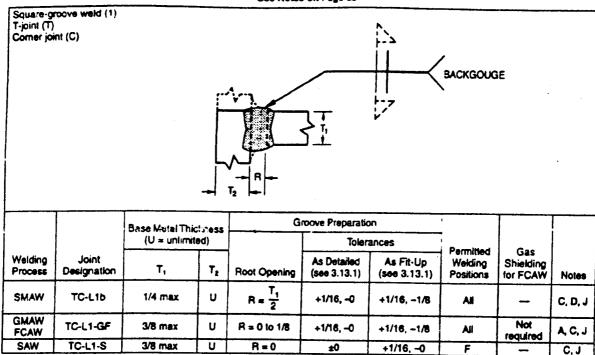



Figure 3.4—Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

STD.AUS D1.1-ENGL 1998 # 0784265 0508514 015

Prequalification of WPSs/67

See Notes on Page 88

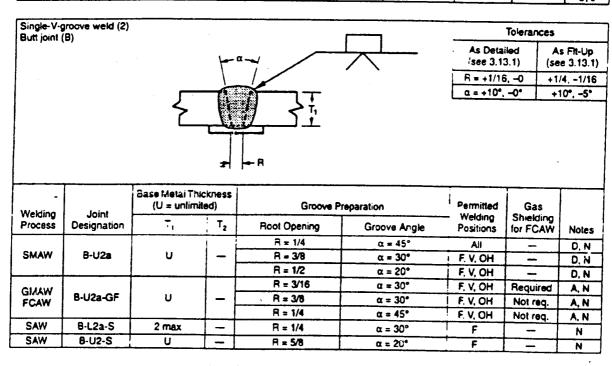
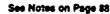
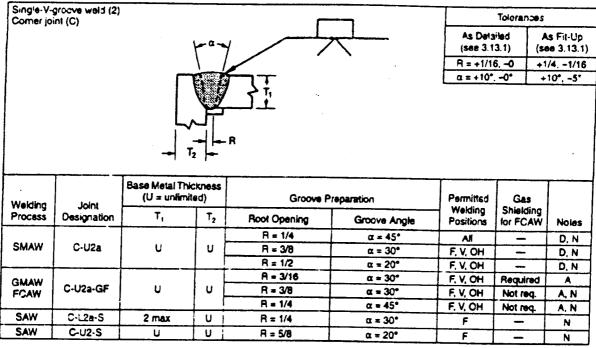


Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

•		
1	منمه	_

گروه مهندسین بین المللی جوش ایران / ۱۳۲۸ " مهندس نیما مترسدیان

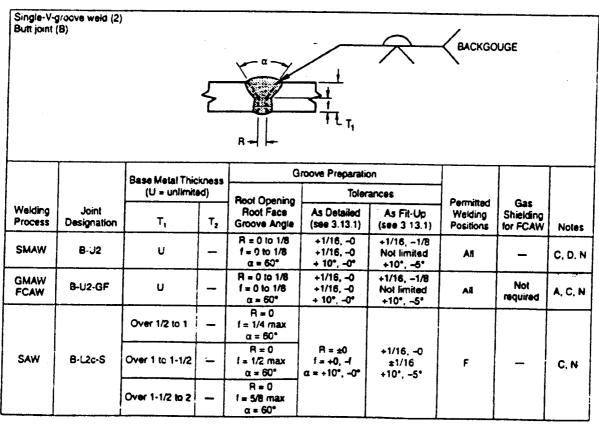


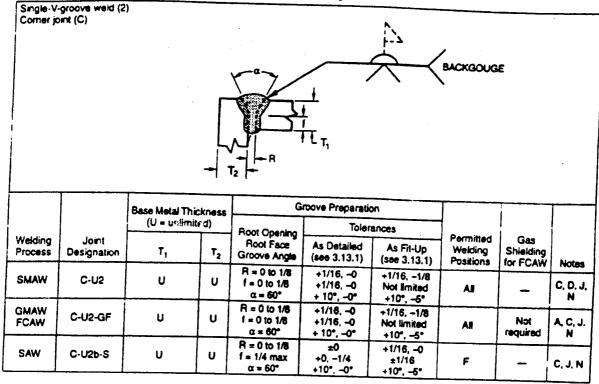

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 🖼 0784265 0508515 T51 📟

68/Prequalification of WPSs




Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

STD.AWS Dl.1-ENGL 1998 ## 0784265 0508516 998

Prequalification of WPSs/69

(

See Notes on Page 88

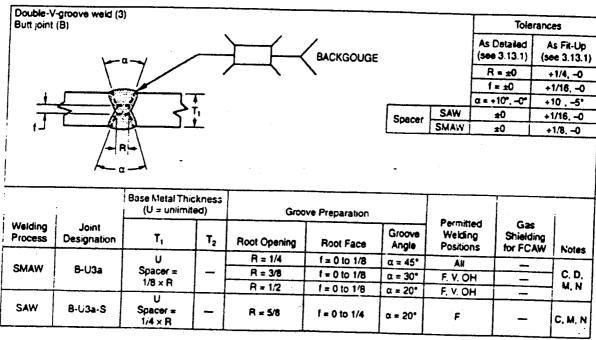
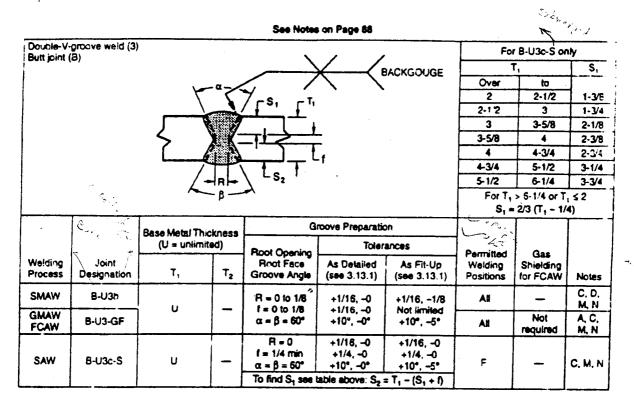


Figure 3.4 (Continued)--Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

ضمیمه۳	
گروه مهندسین بین البللی جوش ایران/ ۱۳۲۸	دوره آموزشی



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 ### 0784265 0508517 824

70/Prequalification of WPSs

Butt joint	vel-groove weld	1 (4)	^				Tolerances	
BUIL JUINE	(6)	1				As Detai (see 3.1)		s Fit-Up
						R = +1/16	5, -0 +1.	/4, -1/16
		LA			[$\alpha = +10^{\circ},$		10°, -5°
		Base Metal To		Groove P				I
Welding	Joint	(0 - 0 - 1 - 1		GIOOVE	reparation	Permitted Weiding	Gas Shielding	
Welding Process	Joint Designation	T ₁	T ₂	Root Opening	Groove Angle	Welding Positions	Gas Shielding for FCAW	Notes
Process	Designation	т,				Weiding	Shielding	Notes Br. D. N
				Root Opening	Groove Angle	Welding Positions	Shielding for FCAW	Br, D. I
Process SMAW	Designation	т,		Root Opening R = 1/4	Groove Angle α = 45°	Welding Positions Ail	Shielding for FCAW	Br. D. N
Process SMAW GMAW	Designation	т,		Root Opening R = 1/4 R = 3/8	Groove Angle α = 45° α = 30°	Welding Positions Ail	Shielding for FCAW	Br. D. N Br. D. N A, Br, N
Process SMAW	Designation B-U4a	T ₁		Root Opening R = 1/4 R = 3/8 R = 3/16	Groove Angle α = 45° α = 30° α = 30°	Welding Positions All All All	Shielding for FCAW — — Required	
Process SMAW GMAW	Designation B-U4a	T ₁		Root Opening R = 1/4 R = 3/8 R = 3/16 R = 1/4	Groove Angle α = 45° α = 30° α = 30° α = 45°	Welding Positions All All All All	Shielding for FCAW	Br. D. N Br. D. N A, Br. N A, Br. N

Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW/QB-422

/QB-	4 44		I												19	998	3 S	EC	77(NC	D	•															
	Product	Form	Forginge	Forest	Spiritor	Foreign	Foreigns	Forgings	7	Forgings	Forgings	Forgings	Forgings	Forgings > 5 in.		rorgings	Foreigns > 5 in.	Fore land 1 to 12		Forgings	Foreings > 5 in		Forgings	Forgings		Forgings > 5 in.	Foreings	Foreings	Forgings > 5 In.			Forgings > 5 In.		rorgings > 5 In. Forcings	cymy n	Forgings	• 66
	Nominal	Composition	3Cr-1Mo-V-Ti-B	2.25Cr-1 Mo-V	5Cr-0.5Mo	5Cr-0.5Mo	9Cr-1 Mo	9Cr-1Mo-V		13Cr	13Cr	22Cr-13NI-5Mn	ZICr-6Ni-9Mn	18Cr-8N	18Cr-8Ni	18Cr-8Ni	18Cr-8Ni	18Cr-8Ni	18Cr-8Ni	18Cr-8NI-N	18Cr-8Ni-N	18Cr-8NI-N	17Cr-14NI-4Si	21Cr-11NI-N	25C-20MI	25Cr-20Mi	25Cr-6NI-Mo-N	20Cr-18Ni 6Mo	16Cr-12NI-2Mu		16CF12N-2M0	16C:-12N:-2M0	16Cr-12Ni-2Mo	16Cr-12Ni-2Mo		16Cr-12NI-2Mo-N	
Brazing	Š		:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:		:	: :		:		:	
Bra	g &		102	:	102	102	102	102	,	102	707	102	, 501	701	102	102	102	102	102	102	102	102	102	707	102	102	102	102	102	102	102	102	102	102		102	•
	Group No.		:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	
ling	့ နွဲ		:	:	:	:	:	:		:	:	:	: :	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	
Welding	Group No.	-	٠,	-	_	- ,	- ,	-	_	. ~	۰ ۳	, ~	. ~		-	-	~ .	- .	- ,	- -	٠,		- 2	ı	~	7		.		-	~-	~	~		•		
	P. 9.	ړ	ץ נ	ا م	() (E	90	0 0	90	•	• •	- 00	· &	80		&	3 0 (x 0	.	o a	.	οα	o «	; eo		œ	∞ ;	Ξ ₂	. x	5	8	œ	30	œ	3	30		•
Minimum	Specified Tensile, ksi	85) ((A. C. (A. A.)	م المام الما	2 &) K	3	0,2	85	100	90	70		75	6 6	2 5	2 4	C &	2 02	75	28	87		02	c ;	3	20	•	75	6 5	0 ;	2 ;	6/	80	02	
	UNS No.	K31830	K31835				K91560		K91151	K91151	\$20910	\$21904	\$30400		530400	530403	S30409	\$30409	530451	530453	\$30453	\$30600	530815		531000	531200	531254	531600		531600	531603	531603	531609	60000	531651	531653	•
	Type or Grade	F3V	F22V	(F5	FSA	F9	F91		F6a, Cl. 1	F6a, Cl. 2	FXM-19	FXM-11	F 304	Eana	F304L	F304L	F304H	F304H	F304N	F304LN	F304LN	F46	F45		F310	F50	F44	F316		F3161	F3161	F316H	F316 Н		F316N	F316LN	
,	Spec.	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	;	SA-182	SA-182	SA-182	5A-182	281-RC	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	SA-182	CA.102	SA-182	SA-182	SA-182	SA-182	\$4.182	SA-182	SA-182	SA-182	SA-182			SA-182	

ضمیمه ۴

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

WELDING DATA

OW/QE-422

	371	Minimum		Welding	ling		Brazing	lng		
	S o	Specified Tensile, ksi	ج . 8	Group No.	۶. گ	Group No.	- S	Š.	Nominal Composition	Product Form
	831700	75	0	1	:	:	102] :	18Cr-13Ni-3Mo	Forgings
	531703	\$9	60		;		102		18(r_13Wi_3Mo	To see the second
	\$31703	70	3	. ~	: :	: :	101	:	18C-13NI-3MO	rorgings > 5 in.
	531803	8	101	. ~	: :		102	: ;	22Cr-5Ni-3Mo:N	Formulas
	\$32100	70	80		:	: :	102	: :	18Cr-10NI-TI	Foreings > 5 in
	532100	75	60	1	:	:	102	:	18Cr-10NI-TI	Forgings
	\$32109	70	60	-	;		200		JEC. JON. T.	
5A-182 F321H	\$32109	75	· cc		:	:		:	John Ti	rorgings > 5 In.
	\$32760	109	, :	•	10H	: -	707	307	25Cr-8NI-340-W-	Forgings
						ı			Cu-N	STEP OF
	833100	80	6 0	7	:	:	102	:	20NI-BCr	Foreines
	S34700	20	&	7	:	:	102	:	18Cr-10NI-Cb	Foreings > 5 in.
SA-182 F347	S34700	75	∞.	-	:	:	102	:	18Cr-10NI-Cb	Forgings
SA-182 F347H	834709	6	a							
	\$34709	2 5	•	٠,	:	:	707	:	18Cr-10Ni-Cb	Forgings > 5 in.
	534800	2 6		٠,	:	:	102	:	18C:-10NI-Cb	Forgings
	234800	2 5	5	٠,	:	:	102	:	18Cr-10Ni-Cb	Forgings > 5 in.
	274600	C ;	:	-	:	:	102	:	18Cr-10NF-Cb	Forgings
	334807	2 ;	30	-	:	:	102	:	18Cr-10Ni-Cb	Forgings > 5 in.
	234809	c C	c o	-	: ,	:	102	:	18Cr-10NI-Cb	Forgings
	541026	110	٠	•	:	:	102	į	13Cr-0 5Mo	Forelose
SA-182 F6NM	541500	115	•	4	:	;	102		13Cr-4 5Ni-Mo	
	S42900	09	•	7	:		102		15Cr	Fornier
	\$43000	09		2	:	:	102		176	Forefore
SA-182 FXM-27Cb	S4462 <i>1</i>	09	101		:	:	102	:	27Cr-1Mo	Forgings
A 182 F6a, Cl. 3	841000	110	:	:	æ	r		202	730.	
A 182 F6a, Cl. 4	241000	130	:		ۍ د	· M	: :	102	13Cr-5Mo	Forgings
SA-192	K01201	41		-	:	:	101	÷	C-SI	Smis. tube
	K11597	09	4	-	:	;	102		1 25Cr-0 5Mo.CI	Semile 4.th
SA-199 T22	K21590	09	SA	,		•	200	:	2.2507.2500.21	Sims, tube
	K31509	09	\$¢		: :	: :	102	:	2.25Cr-1M0	Smis, tube
	K31545	09	SA	_	: :	: :	102	: :	3Cr-1Mo	Smis, tube
	K41545	09	58	-	:		102		5Cr-0 5Mo	Create true
SA-199 T9	K81590	09	58	-	:	:	102	: :	9Cr-1Mo	Smls. tube

ن	ه مناد د	- L	. 12	
U				200

(·

اشنایی با تست و دستورالعمل جوشکاری

محروه مهندسين بين العللي جوش ايران

شركت كاوش همايش

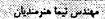
QW/QB-422 1998 SECTION IX

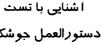
Type or UNS Specified P. Group S. Group P. S. Nominal	e or UNS ade No. K11742 K12542 K12542 K121703 K22103 K22103 K31718 K32018 K11820 K12020 K12020 K12020 K12020 K12020 K12020 K12022 K11522 K11522 K11522 K11522 K11522 K11522 K11522 K11523 K02501 K02502		Group No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			υ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο		2 × 2 × 2 × 2
191 192	2		~			: :: :::::: :::		Smls. tube Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate, 2 in. & under Plate Plate
A K11742 75 4 1 101 0.5C-1.25Mn-SI A K22173 65 9A 1 101 2.5MI B K22173 65 9A 1 101 2.5MI B K31718 65 9A 1 101 2.5MI F K31718 65 9B 1 101 3.5MI F C32018 75 9B 1 101 3.5MI F C11820 65 9B 1 101 3.5MI A K11820 65 9B 1 101 3.5MI B K12020 70 9B 1 101 6-0.5Mo C K12220 7 3 2 101 6-0.5Mo T1 K11222 53 3 1 101 6-0.5Mo T1 K11222 53 3 1 101 6-0.5Mo T1 K11222 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.5Cr-1.25Mn-Si 0.5Cr-1.25Mn-Si 2.5Ni 2.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni C-0.5Mo C-0.5Mo</td> <td>Plate Plate Plate</td>	2						0.5Cr-1.25Mn-Si 0.5Cr-1.25Mn-Si 2.5Ni 2.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni 3.5Ni C-0.5Mo C-0.5Mo	Plate
B K1247 65	2 B K12542 3 A K21703 3 B K22103 3 D K31718 3 F C C C C C C C C C C C C C C C C C C						0.5Cr-1.25Mn-51 0.5Cr-1.25Mn-51 2.5N1 2.5N1 3.5N1 3.5N1 3.5N1 3.5N1 3.5N1 C-0.5M0 C-0.5M0	Plate
A K21703 65 9A 1 101 25NI B K23103 70 9A 1 101 3.5NI F K32103 70 9B 1 101 3.5NI F 75 9B 1 101 3.5NI A K11820 65 3 1 101 3.5NI C K12020 75 3 2 101 2.5NI C K12020 75 3 1 101 2.5NI T1b K11822 53 3 1 101 2.05Mo T1b K11822 53 3 1 101 2.05Mo T1 K12020 60 3 1 101 2.05Mo T1 K11522 53 3 1 101 2.05Mo T1 K11522 53 3 1 101 2.05Mo C K12020 <td< td=""><td>3 A K21703 3 B K22103 3 E K32018 3 F 3 F 4 A K11820 4 C K12320 4 C K12320 9 T1b K11422 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570 Gr30 K02502 A570 Gr30 K02502</td><td></td><td></td><td></td><td></td><td></td><td>2.5NI 2.5NI 3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo</td><td>Plate Plate Plate Plate Plate Plate Plate > 2 in. & under Plate Plate Plate</td></td<>	3 A K21703 3 B K22103 3 E K32018 3 F 3 F 4 A K11820 4 C K12320 4 C K12320 9 T1b K11422 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570 Gr30 K02502						2.5NI 2.5NI 3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate Plate Plate Plate Plate Plate Plate > 2 in. & under Plate Plate Plate
K.	## ## ## ## ## ## ## ## ## ## ## ## ##						2.5NI 2.5NI 3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate Plate Plate Plate Plate Plate > 2 in. & under Plate Plate Plate Plate
Karata K	A K11820		-				2.5NI 3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate Plate Plate Plate Plate > 2 in. Plate, 2 in. & under Plate Plate Plate
E K32118 65 98 1 101 3.5NI F K32018 75 98 1 101 3.5NI F K12202 75 98 1 101 3.5NI A K12202 70 98 1 101 3.5NI B K12202 70 3 2 101 C-0.5Mo C K12202 75 3 2 101 C-0.5Mo T1 K11222 53 3 1 101 C-0.5Mo T1 K11222 53 3 1 101 C-0.5Mo T1 K12223 50 3 1 101 C-0.5Mo A-1 K12223 50 3 1 101 C-0.5Mo A-1 K12223 50 3 1 101 C-0.5Mo A-1 K12223 60 3 1 1 101 C-0.5Mo A-2 <td>## F K32018 ## A K11820 ## B K12020 ## B K12020 ## B K12020 ## T1b K11422 ## T1b K11422 ## T1a K11522 ## T1a K11522 ## T1a K12023 ## T2 K11547</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo</td> <td>Plate Plate Plate > 2 in. Plate, 2 in. & under Plate Plate Plate Plate</td>	## F K32018 ## A K11820 ## B K12020 ## B K12020 ## B K12020 ## T1b K11422 ## T1b K11422 ## T1a K11522 ## T1a K11522 ## T1a K12023 ## T2 K11547						3.5NI 3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate Plate Plate > 2 in. Plate, 2 in. & under Plate Plate Plate Plate
F	# F						3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate > 2 in. & under Plate, 2 in. & under Plate Plate
F 75 9B 1 101 3.5MI A K11820 65 3 1 101 3.5MI B K12020 70 3 2 101 C-0.5Mo C K12020 75 3 2 101 C-0.5Mo T1b K11422 53 3 1 101 C-0.5Mo T1b K11522 55 3 1 101 C-0.5Mo T1a K12023 60 3 1 101 C-0.5Mo A-1 K02707 60 1 1 1 101 C-0.5Mo A-1 K02707 60 1 2 101 C-0.5Mo C K03501 70 1 2 101 C-0.5Mo A570B 80 49 1 1 1 1 1 A570B 80 49 1 1 1 1 1 A570B </td <td># A K11820 # B K12020 # C K12320 # T1b K11422 # T1 K11522 # T1a K11522 # T1a K12023 # A570 Gr30 K02502 # A570 Gr30 K02502</td> <td></td> <td>a00 -</td> <td></td> <td></td> <td></td> <td>3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo</td> <td>Plate > 2 in. Plate > 2 in. & under Plate, 2 in. & under Plate Plate Plate</td>	# A K11820 # B K12020 # C K12320 # T1b K11422 # T1 K11522 # T1a K11522 # T1a K12023 # A570 Gr30 K02502		a00 -				3.5NI 3.5NI 3.5NI C-0.5Mo C-0.5Mo	Plate > 2 in. Plate > 2 in. & under Plate, 2 in. & under Plate Plate Plate
F K11820 65 3 1 101 3.5Mi B K12020 70 3 1 101 C-0.5Mo C K12220 75 3 2 101 C-0.5Mo T1b K11422 53 3 1 101 C-0.5Mo T1 K11222 55 3 1 101 C-0.5Mo T1 K11222 55 3 1 101 C-0.5Mo T1 K11222 55 3 1 101 C-0.5Mo A-1 K02707 60 1 1 1 C-0.5Mo A-1 K02707 60 1 1 1 C-0.5Mo A-1 K02707 60 1 1 1 1 C-0.5Mo A-1 K03502 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# A K11820 # B K12020 # C K12320 # T1b K11422 # T1 K11522 # T1a K12023 # T2 K11522 # T2 K11522 # T2 K11527 # T2 K11547	·	- 100 -			:: :::	3.5Ni C-0.5Mo C-0.5Mo C-0.5Mo	Plate > 2 in. Plate, 2 in. & under Plate Plate Plate Plate
A K11820 65 3 1 101 5.5NI B K12020 70 3 2 101 C-0.5Mo C K12220 75 3 2 101 C-0.5Mo T1b K11422 53 3 1 101 C-0.5Mo T1a K12223 56 3 1 101 C-0.5Mo A-1 K02207 60 1 1 101 C-0.5Mo A-1 K03501 70 1 2 101 C-0.5Mo A-1 K03501 70 1 1 101 C-0.5Mo C K03501 70 1 2 101 C-0.5Mo A570A A570B 1 1 1 101 C-Mn-SI A570G A53 K02502 49 1 1 101 C-Mn-SI A570G A50 C 5 1 1 1 101 C-Mn-SI	4 A K11820 4 C K12320 9 T1b K11422 9 T1 K11522 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570A A570A A570C A570C A570C A570C A570C					: :::	5.5NI C-0.5Mo C-0.5Mo	Plate, 2 in. & under Plate Plate Piate
A K11820 65 3 1 101 C-0.5Mo C K12020 70 3 2 101 C-0.5Mo T K12020 75 3 2 101 C-0.5Mo T K12020 75 3 1 101 C-0.5Mo T K12022 53 3 1 101 C-0.5Mo T K12023 60 3 1 101 C-0.5Mo A-1 K02707 60 1 1 101 C-0.5Mo A-1 K02502 49 1 1 101 C-0.5Mo A-1 K02502 49 1 1 1 101 C-0.5Mo A-1 K02502 49 1 1 1 1 1 1 A-5706 A-5706 49 1 1 1 1 1 1 A-5706 10 4 1 1 1 </td <td>4 A K11820 4 C K12320 9 T1b K11522 9 T1 K11522 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570A A570A A570B A570B A570C A570C A570C A570C</td> <td></td> <td>7 2 2 1</td> <td></td> <td></td> <td>:::</td> <td>C-0.5Mo C-0.5Mo C-0.5Mo</td> <td>Plate Plate Plate</td>	4 A K11820 4 C K12320 9 T1b K11522 9 T1 K11522 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570A A570A A570B A570B A570C A570C A570C A570C		7 2 2 1			:::	C-0.5Mo C-0.5Mo C-0.5Mo	Plate Plate Plate
R K12020 70 3 2 101 101 10-0-5Mo	4 B K12020 4 C K12320 9 T1b K11422 9 T1 K11522 9 T1a K12023 0 A-1 K02707 0 C K03501 A570A A570A A570B A570B A570C A570C A570C A570C					: : :	C-0.5Mo	Plate Plate Plate
C K12320 75 3 2 101 C-0.5Mo Tib K11422 53 3 1 101 C-0.5Mo Til K11522 55 3 1 101 C-0.5Mo Til K11522 55 3 1 101 C-0.5Mo A-1 K02707 60 1 101 C-0.5Mo A-270A A-270A A-270A A-270B A-2	4 C K12320 9 T1b K11422 9 T1 K11522 9 T1 K12023 0 A-1 K12023 0 C K03501 0 C K03501 A570A A570 Gr30 K02502		v 01			: :	C-0.5Mo	Plate Plate
Tib Ki1522 53 3 1 101 C-0.5Mo Tia Ki1522 55 3 1 101 C-0.5Mo Tia Ki2023 60 3 1 101 C-0.5Mo C K03501 70 1 2 101 C-0.5Mo C K03501 70 1 2 101 C-Mn-Si A570A A570 Gr30 K02502 49 11 1 101 C-Mn-Si A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G A570G Ti	9 T1b K11422 9 T1 K11522 9 T1 K12023 0 A-1 K02707 0 C K03501 A570 Gr30 K02502 A570 Gr30 K02502 A570 Gr30 K02502 A570 Gr30 K02502 A570 Gr30 K02502		~ ~			:	C-0.5Mo	Piate
Tib K11422 53 3 1 101 C-0.5Mo Ti K12023 60 3 1 101 C-0.5Mo A-1 K02707 60 1 1 101 C-0.5Mo C K03501 70 1 2 101 C-Mn-Si A570 G-70 K02502 49 1 1 C-Mn-Si A570 G-70 K02502 52 1 1 1 1 1	9 T1b K11422 9 T1 K11522 9 T1a K12023 0 A-1 K02707 0 C K03501 A570A A570 Gr30 K02502 A570 Gr30 K02502 A570 Gr30 K02502 A570 Gr30 K02502	38			6		•	
T1 K11522 55 3 1 C-0.5Mo T1a K12023 60 3 1 101 C-0.5Mo A-1 K02707 60 1 1 1 101 C-0.5Mo C K03501 70 1 2 101 C-0.5Mo A570A 45 101 C-Mn-Si A570B 49 101 C-Mn-Si A570B 52 101 C-Mn-Si A570B 55 101 C-C-SMo T1 K11547 60 4 1 102	9 T1 K11522 9 T1a K12023 0 A-1 K02707 0 C K03501 A570A A570B A570B A570C A570C A570C A570C A570C A570C	56	•					
Tia K12023 60 3 1 101 C-0.5Mo A-1 K02707 60 1 1 1 101 C-0.5Mo A570A 45 101 C-Mn-Si A570G A570G 49 1 1 1 101 C A570G A570C 52 1 1 1 101 C A570G A570C 55 1 1 101 C A570C 100 C A57	9 Tla K12023 0 A-1 K02707 0 C K03501 A570A A570 G730 K02502 A570 G733 K02502 A570C A570C			:	101	:	C-0.5Mo	Smls. tube
A-1 K02707 60 1 1 101 C-0.5Mo C K03501 70 1 2 101 C-SI A570A 1 1 1 101 C-Mn-SI A570B 1 1 1 101 C-Mn-SI A570C 1 1 1 101 C-SI A570C 1 1 1 101 C-SI A570D 1 1 1 101 C-SIMo T11 K11567 60 4 1 1	0 A-1 K02707 0 C K03501 A570A A570 G130 K02502 A570B A570C			•		:	C-0.5Mo	Smlsube
A-1 K02707 60 1 1 1 C-SI A570A K03501 70 1 2 101 C-Mn-SI A570A K02502 49 1 1 101 C A570 Gr30 K02502 52 1 1 101 C A570 Gr33 K02502 52 1 1 101 C A570 Gr33 K02502 52 1 1 1 101 C A570 Gr33 K02502 52 1 1 1 101 C A570 Gr33 K02502 52 1 1 1 101 C A570 Gr33 K02502 52 1 1 1 101 C A570 Gr33 K02502 52 1 1 101 C A570 Gr33 K11547 60 4 1 102 102 102-0.5Mo-T T11 K11547 60 5A	0 A-1 K02707 0 C K03501 A570A A570 G130 K02502 A570 G133 K02502 A570C A570C	3	•	:	101	:	C-0.5Mo	Smits, tube
C K03501 70 1 2 101 C-SI A570A A570B 45 1 1 101 C-Mn-SI A570 Gr30 K02502 49 1 1 101 C A570 Gr33 K02502 52 1 1 101 C A570 Gr33 K02502 50 4 1 101 C C A570 Gr3 K11547 60 4 1 102 102 102 102 102 102 102 102 102 102 102	A570A A570B A570 Gr30 K02502 A570 Gr33 K02502 A570C A570C	9			Š		i	
A570A 45 6 6 7 101 C-Mn-Si A570 Gr30 K02502 49 1 1 101 C A570 B 49 1 1 101 C A570 C 52 1 1 101 C A570 C 52 1 1 101 C A570 C 52 1 1 101 C A570 C 55 1 1 101 C T12 K11547 60 4 1 102 1.25Cr-0.5Mo T11 K11597 60 4 1 102 1.25Cr-0.5Mo T17 K12947 60 5A 1 102 1.25Cr-1Mo T22 K41245 60 5A 1 102 2.25Cr-1Mo T5 <td>A570A A570 Gr30 A570B A570 Gr33 A570C A570D</td> <td></td> <td></td> <td>:</td> <td></td> <td>:</td> <td>ני-צו</td> <td>Smfs. tube</td>	A570A A570 Gr30 A570B A570 Gr33 A570C A570D			:		:	ני-צו	Smfs. tube
A570A H 1 1 101 C A570 Gr30 K02502 49 1 1 101 C A570 B 49 1 1 101 C A570 C 52 1 1 101 C A570 C 55 1 1 101 C A570 C 55 1 101 C A570 C 55 1 101 C A570 C 55 1 101 C T12 K11562 C 60 4 1 102 1.25cr-0.5Mo T17 K11597 C 60 4 1 102 1.25cr-0.5Mo T22 K21590 C 60 5A 1 102 2.25cr-1Mo T5c K41245 C 60 5A 1 102 2.25cr-1Mo T5c K41545 C 60	A570A A570 Gr30 K02502 A570B A570 Gr33 K02502 A570C A570D	-	7			:	C-Mn-Si	Smls. tube
A570 Gr30 K02502 49 1 1 101 C A570 B 49 1 1 101 C A570 C 52 1 1 101 C A570 C 52 1 1 101 C A570 C 52 1 1 101 C A570 C 55 1 101 C C A570 C 55 1 101 C C A A A A A B	A570 Gr30 K02502 A570B A570 Gr33 K02502 A570C A570D	5		-			(
A570B 49 1 1 101 C A570C 52 1 1 101 C A570C 52 1 1 101 C A570C 52 1 101 C A570C 55 1 101 C T2 K11547 60 4 1 101 C C T11 K11562 60 4 1 102 1Cr-0.5Mo ICr-0.5Mo T11 K11597 60 4 1 102 1.25Cr-0.5Mo-5i ICr-0.5Mo ICr-0.5Mo ICr-0.5Mo-5i ICr-0.5Mo-5i ICr-0.5Mo-5i ICr-0.5Mo-5i ICr-0.7 ICr-0.5Mo-5i ICr-0.5Mo-7i ICr-0.5Mo-7i ICr-0.5Mo-7i ICr-0.5Mo-7i ICr-0.5Mo-7i ICr-0.5Mo-7i	A570B A570 Gr33 K02502 A570C A570D		•	٠, ٠	:	101	، د	Welded pipe
A570 Gr33 K02502 52 1 1 1 101 C A570D 52 11 101 C A570D 52 101 C T2 K11547 60 4 1 101 C-0.5Mo T12 K11562 60 4 1 102 107-0.5Mo T11 K11597 60 4 1 102 125C-0.5Mo-Si T17 K12647 60 108 1 102 102 1.25C-0.5Mo-Si T21 K21590 60 5A 1 102 2.25C-1Mo T5 K41245 60 5F 1 102 2.25C-1Mo T5 K41245 60 5F 1 102 5C-0.5Mo-Ti T5	A570 Gr33 K02502 A570C A570D	•	:	٠, ٠	:	101	v ·	Welded pipe
A570C 52 1 1 101 C A570D 52 1 1 101 C T2 K11547 60 4 1 101 0.5Cr-0.5Mo T12 K11562 60 4 1 102 1Cr-0.5Mo T11 K11597 60 4 1 102 1.25Gr-0.5Mo T17 K12047 60 108 1 102 1.Cr-V T21 K21590 60 5A 1 102 2.25Gr-1Mo T21 K31545 60 5A 1 102 2.25Gr-1Mo T5 K41245 60 5F 1 102 5Gr-0.5Mo-Ti T5 K41545 60 5H 5Gr-0.5Mo-Ti	A570D A570D	•	:	1	:	101	ပ	Welded pipe
A570D 1 1 101 C T2 K11547 60 3 1 101 0.5Cr-0.5Mo T12 K11562 60 4 1 102 1Cr-0.5Mo T11 K11597 60 4 1 102 1.25Cr-0.5Mo T17 K12047 60 108 1 102 1.25Cr-0.5Mo T21 K21590 60 5A 1 102 2.25Cr-1Mo T21 K31545 60 5F 1 102 2.25Cr-1Mo T5 K41245 60 5F 1 102 5Cr-0.5Mo-Ti T5 K41545 60 5H 1 5Cr-0.5Mo-Ti 5Cr-0.5Mo-Ti	A570D	•	•	7	:	101	ပ	Welded pipe
T2 K11547 60 3 1 101 0.5Cr-0.5Mo T12 K11562 60 4 1 102 1Cr-0.5Mo T11 K11597 60 4 1 102 1.25Cr-0.5Mo T17 K12047 60 108 1 102 1.25Cr-0.5Mo-Si T22 K21590 60 5A 1 102 1.Cr-V T21 K31545 60 5A 1 102 2.25Cr-1Mo T5c K41245 60 5F 1 102 5Cr-0.5Mo-Ti T5 K41545 60 5H 1 102 5Cr-0.5Mo-Ti	T2 K11547	•	:	7	:	101	ပ	Welded pipe
T2 K11547 60 3 1 · · · · · · · · · · · · · · · · · · ·	T2 K11547	•	:	-	:	101	ပ	Welded pipe
T12 K11562 60 4 1 102 102 102 103 (cm-0.5Mo) Smls. T11 K11597 60 4 1 102 102 Smls. T17 K12047 60 108 1 102 1.25Cr-0.5Mo-Si Smls. T22 K21590 60 5A 1 102 2.25Cr-0.5Mo-Si Smls. T21 K31545 60 5A 1 102 2.25Cr-1Mo Smls. T5 K41245 60 5F 1 102 5Cr-0.5Mo-Ti Smls. T5 K41545 60 5B 1 102 5Cr-0.5Mo-Ti Smls.			_		Š		•	
T11 K11597 60 4 1 102 102 105 Cr-0.5Mo-Si Smls. T17 K12047 60 108 1 102 1.25Cr-0.5Mo-Si Smls. T22 K21590 60 5A 1 102 2.25Cr-1Mo Smls. T21 K31545 60 5A 1 102 3Cr-1Mo Smls. T5 K41245 60 5F 1 102 5Cr-0.5Mo-Ti Smls. T5 K41545 60 5B 1 102 5Cr-0.5Mo-Ti Smls.	T12 K11562		. ,-	:	101	:	0.5Cr-0.5Mo	Smls, tube
T17 K12047 60 108 1 102 1.25Gr-0.5Mo-Si Smls. T22 K21590 60 5A 1 102 2.25Gr-1Mo Smls. T21 K31545 60 5A 1 102 2.25Gr-1Mo Smls. T5c K41245 60 5F 1 102 5Gr-0.5Mo-Ti Smls. T5 K41545 60 5B 1 102 5Gr-0.5Mo-Ti Smls.	T11 K11597		-	:	102	:	ICr-0.5Mo	Sinh, tube
T22 K21590 60 5A 1 102 102 102 Smls. T21 K31545 60 5A 1 102 2.25Cr-1Mo Smls. T5c K41245 60 5F 1 102 3Cr-1Mo Smls. T5 K41545 60 5B 1 102 5Cr-0.5Mo cmls.	T17 K12047			:	102	:	1.25Cr-0.5Mo-Si	
T21 K31545 60 5A 1 102 2.25Gr-1Mo Smls. T5c K41245 60 5F 1 102 3Gr-1Mo Smls. T5 K41245 60 5F 1 102 5Gr-0.5Mo-Ti Smls. T5 K41545 60 5B 1 102 5Gr-0.5Mo-Ti Smls.	T22 K21600		-	:	102	:	1Cr-V	Smls. tube
75c K41245 60 5ℓ 1 · · · · · 102 · · · 3Cr-1Mo Smis. T5 K41245 60 5ℓ 1 · · · · · 102 · · · 5Cr-0.5Mo-Ti Smis. T5 K41545 60 5ℓ 1 · · · · · · 102 · · · · 5Cr-0.5Mo Smis.	T21		_	:	102	:	2.25Cr-1Mo	Smls tube
75 K41245 60 5F 1 102 5Cr-0.5Mo-TF Smis.	750			•	102	:	3Cr-1Mo	Smit sing
15 K41545 60 58 1 102 5Cr-0.5Mn	13C K41245		~		102	:	5Cr-0.5Mo-Ti	Smlr fish
	15 K41545		_		102		5Cr-0.5Mo	Smis. (does

صميمه ۴

المجال المثلى جوش ايوان محروه مهندسين بين العللى جوش ايوان

آشنایی با تست و دستورالعمل جوشکاری




شركت كاوش همايش

QW/QB-422

															W	ELD	IN	IG	D/	ΑT	Α															Q	? ₩	Ι⁄Q	}B
	Product Form		Smis. tube	Smis. tube	Smls. tube	Smis tube	Sals tube	Smir. case		Smis. tube		Smis. tube	Smls. tube	Smis. tube	Smis. tube	of the state of th	Series, tube	Smis. tube	Sims. tube	Simis, tube	Smis. tube	A SECOND	Smis. tube	Smls. tube. (>1/2 lg.	Smls. tube, t ≤ 1/2 In.	. gg	Smls. tube	Smls. tube	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Smis. tube	Smis. tube	Strike, tube	Smis. tube	Smls. tube	و المادية	Smis. tube	Smis. tube	Smis. tube	Smls. tube
	Nominal Composition		9Cr-1Mo	A-CI-TWO-A	17Cr-4NI-6Mn	18Cr-5Kl-9Mn	22Cr-13NI-5Mn	18Cr-8Ni	19Cr-8M	18Cr-8Ni		10C-6NI-N	LBCr-BNI-N	21Cr-11NI-N	23Cr-12NI	236-12MI	Dack Take	23Cr-12NI-CB	25Cr_20NI	107-107	20C-20NI	25Cr-20Ni-Cb	25Cr-20Ni-Cb	25Cr-22NI-2Mo-N	25Cr-22NI-2Mo-N	16Cr-12NI-2Mo	16Cr-12Ni-2Mo	16Cr-12NI-2Mo	14C-13H-13H	M-DM2-INST-1001	19C*-15M1-446	10Cr-16 SNL AMO	100-10:0m Ti	18Cr-10Ni-11) BCr., 10NITi	19CF-10NI-CF	IDCT-IONI-CO	18Cr-10Nl-Cb	18Cr-10NI-Cb
ing	Ş. Ş.		:	:	:	:			•	: :		:	:	:	:		:	:	:	:	:	;	:	:	:	:	:	:		:	:	:_	:	:		:	:	:	:
Brazing	4 8		102	701	102	102	102	102	102	102		707	701	102	102	102		102	102	707	707	102	102	102	102	102	102	102	200	2 2	102	102	103	701	102	201	201	701	102
	Group No.		:	:	:					: :		:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:		:	:		:	:		:	:	:	:
- Bu			:	:	:	:				: :		:	:	:	:		•	:	:	:	:	:	:	:	:	:	:	:		•	: :			:	:	:	:	:	:
Welding	Group No.		۰ ،	J	٣	٣	۳		. ~	, , ,	-	٠,	۰,	7	~	~	۰ ۸	۰ ۸	۲ ^		J	7	7	8	~	-	-	7	_	. –	4	4	_	•	_	. –	٠ -	٠,	-
	વ કે		א מ	2	80	•	80	80	· œ	60	a	. a	o a	0	∞	œ	œ	, co	· cc	• «	•	æ	80	80	∞	80	•	80	60	• •	· co	• •	· ec		80	•) cc	.	D
	Specified Tensile, ksi		9 90	3	95	96	100	75	70	75	œ	<u> </u>	. e	6	75	75	75	22	75	22)	75	75	78	84	75	02	75	80	75	75	80	75		75	75	75	5.2	:
	UNS No.	30000	046164	•	\$20100	\$20200	\$20910	S30400	\$30403	830409	530451	530453	530815	010000	230408	830909	\$30940	530941	\$31008	831009		\$31040	531041	\$31050	S31050	831600	S31603	531609	531651	531653	531725	531726	\$32100	i i i	\$32109	534700	\$34709.	\$34800	2007
	Type or Grade	, v	191	!	TP201	TP202	XM-19	TP304	TP304L	TP304H	TP304N	TP304LN	530815	51000	1 P 3095	TP309H	TP309Cb	TP309HCb	TP310S	TP310H		TP310Cb	TP310HCb	TP310MoLN	TP310MoLN	TP316	TP316L	TP316H	TP316N	TP316LN	\$31725	\$31726	TP321		TP321H	TP347	TP347H	TP348	
	Spec.	C 4 21 3	SA-213		SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	777	2A-213	SA-213	SA-213	SA-213	SA-213	SA-213		SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213	SA-213		SA-213	SA-213	SA-213	SA-213	

4

QW/QB-422

1998 SECTION IX

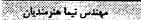
			Minimum		, wel	Welding		Brazing	<u>grit</u>		
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi	P 80	Group No.	γġ	Group No.	Ģ 8	. S.	Nominal Composition	Product Form
SA-213	XM-15	538100	75	8	-	:	:	102] :	18Cr-18Ni-2Si	Smis. tube
SA-214	:	K01807	47		-	:	:	101	:	ပ	E.R.W. tube
SA-216	WCA	102502	09	-	-			101		13.5	معواميدن
SA-216	wcc	302503	02	. ,	. ~	: ;	:	101	:	C-31	Castings
SA-216	WCB	303002	70		5	: :	: :	101	: :	C-SI	Castings
24-217	4000	2205.11	ç	•				,			
177	9.74	7/0716	0/	4	_	:	:	102	:	1.25Cr-0.5Mo	Castings
5A-217	* X	J12082	20	4	7	:	:	101	:	1NI-0.5Cr-0.5Mo	Castings
SA-217	WCI	112522	65		-	:	:	101	:	C-0.5Mo	Castings
SA-217	MC9	J21890	20	5A	-	:	:	102	:	2.25Cr-1Mo	Castings
SA-217	WC5	J22000	20	4	-	:	:	101	:	0.75NI-1Mo-0.75Cr	Castings
SA-217	CS	J42025	96	99	.	:	:	102	:	5Cr-0.5Mo	Castlnos
SA-217	C12	JB 2090	96	8 9	-	:	:	102	:	9Cr-1Mo	Castinos
SA-217	CA15	J91150	90	9		:	:	102	:	13Cr	Castings
SA-225	0	:	75	104	-			101		Nº 0 CM	1 6 7 44.10
SA-225	٥	:	90	10A	~	:		101		Ma-0.5NI-V	Plate 3 in A moder
SA-225	ပ	K12524	105	10A	-	:	:	101	:	Mn-0.5NI-V	Plate
SA-226	:	K01201	47	-	-	:	:	101	:	C-SI	E.R.W. tube
SA-234	WPB	K03006	09	~	-	į		101		19-5	opinio di colorio
SA 234	WPC	K03501	70	-	. ~	:	:		:	5 0	general series
SA-234	WP11, Cl. 1	:	09	4	. ~	: :	•	10.	:	1 25C=0 5Mo_C	C'olog fitting
SA-234	WP12, Cl. 1	K12062	09	4	-		•	.	:	10-0 5Mg	Company mental
SA-234	WP1	K12821	55	•	-	: :	: :	101	: :	C-0 5Mo	Plotos fittiss
SA-234	WP22, Cl. 1	K21590	09	5A	-	:	:	102	:	2.25Cr-1Mo	Ploing fitting
SA-234	X 4	K22035	6 9	46 1	~	:	:	101	:	2Ni-1Cu	Plying fitting
SA-234	K P9	K90941	9 9	5 G		:	:	102	:	SCr-0.5Mo	Piping fitting.
SA-234	WP91	:	68	80	٠ ،	:	•	707	:	ACT-1 Mo	Piping fitting
			1	!	•	:	:	70	:	ACC-TWO-A	Piping litting
SA-240	Type 201	820100	95	60	6	:	:	102	:	17Cr-411-6.Mo	Plate sheet & stela
SA-240	Type 202	820200	96	œ	3	:	:	102		18Cr-5Ni-9Mn	Plate theel & stelp
SA-240	:	\$20400	35	30	3	:	:	102		36Cr-9Mn-2NI-N	Plate thest & style
SA-240	Type XM-19	\$20910	100	80	٣	:	:	102	:	22Cr-13Ni-5Mn	Plate
SA-240	Type XM-19	820910	105	80	٣	:	:	102		22Cr-13NI-5Mn	Chapt & stella
NA-240											

ضمیمه ۴

QW/QB-422 FFRROUS P-NUMBERS AND S-NUMBERS (CONT'D)

议

آشنایی با تست و دستورالعمل جوشکاری


شركت كاوش همايش

كروه مهندسين بين المللي جوش ايران

WELDING DATA

QW/QB-422

		Minimum		Wel	Welding		Brazing	ing		
Spec. Type or No. Grade	UNS No.	Specified Tensile, ksi	ج §	Group No.	S. Š.	Group No.	or S	-S S	Nominal	Product
SA-240 Type XM-1/	\$21600	100	8	-			102		10 C 011 C 11 C 11 C 1	
	\$21603	96		۰.	:	:	102	:	19C-BMD-ONI-MO-N	Sheet & strip
SA-240 Type XM-18	521603	100	• •	۰ ۳	:	:	202	:	19C-0Mn-oni-Mo-N	Plate
SA-240 S21800	821800	95	e ec	۰ ۳	:	:	707	:	19C-SMR-6NI-MO-N	Sheet & strip
SA-240 Type XM-29	\$24000	100) ec	۰ ۳	:	:	707	:	18CF-8NI-4SI-N	Piate, sheet, & strip
) 	,	•	:	:	701	:	18CF-3NI-12MD	Plate, sheet, & strip
•	230200	75	89	, 4	:	:	102	,	18Cr-8Ni	•
	S30400	75	80	, -4			100	:	IN O LOGIC	
•	S30403	70	80	. ~		•	102	:	Jec-pari	
SA-240 Type 304H	S30409	75	æ	-	•	•	5	:	100 Out	Fiale, sneet, & strip
SA-240 Type 304N	\$30451	80	ο α		:	:	707	:	10CF-BNI	Plate, sheet, & strip
SA-240 Type XM-21	230452	3	•	٠,	:	:	107	:	18Cr-8Ni-N	Plate, sheet, & strip
-	530453	6 8	o (:	:	102	:	18Cr-8Ni-N	Plate
	200425	? :	©	-	:	:	102	:	18Cr-8NI-N	Sheet & strip
	530453	75	®	-	:	:	102	:	18Cr-8NI-N	Plate sheet & strip
	230500	70	80	-	:	:	102	:	18Cr-11Ni	Plate sheet & strip
3A-24U 330600	230600	78	æ	7	:	:	102	:	17Cr-14Ni-4Si	Plate sheet & strip
CA.240 C20016		;								dine of the state
- •	230613	20 7	x 0	7	:	:	102	:	21Cr-11NI-N	Plate, sheet, & strip
•	330408	۲ ;	S	7	:	:	102	:	23Cr-12Ni	Plate, sheet, & strip
	50000	۲ :	∞	2	:	:	102	:	23Cr-12NI	•
	250940	S	∞	7	:	:	102	:	23Cr-12NI-Cb	4
i ype soyner	530941	75	©	7	:	:	102	:	23Cr-12NI-Cb	4
SA-240 Type 310S	831008	4	c	•						
SA-240 Type 310Cb	531040	, K	.	v (:	:	102	:	25Cr-20Ni	Plate, sheet, & strip
SA-240 Type 310HCh	231041	2 %		v (:	:	102	:	25Cr-20NI-Cb	Plate, sheet, & strip
		2 6	D	2	:	:	102	:	25Cr-20NI-Cb	Plate, sheet, & strip
		2 5	æ ;	~	:	:	102	:	25Cr-22NI-2M0-N	4
	231764	3 3	HO!	-	:	:	102	:	25Cr-6Ni-Mo-N	4
	63155	. 3	20	•	:	:	102	:	20Cr-18NI-6Mo	
	22160	99	HOI	,1	:	:	102	:	25Cr-6.5NI-3MO-N	
SA-240 Type 316	831600	75	œ	-			201			
SA-240 Type 316L	531603	70	•		:	•	707	:	101.7-12N1-2M0	Plate, sheet, & strip
•	531609	, <u>,</u>	•	٠,	:	:	701	:	16Cr-12Ni-2Mo	Plate, sheet, & strip
	511636			٠,	:	:	102	:	16Cr-12NI-2Mo	Plate, sheet, & strip
•	631440	2 ;	o (:	:	102	:	16Cr-12NI-2Mo-TI	Plate, sheet, & strip
		C,	2 0	-	:	:	102	:	16Cr-12NI-2Mo-Cb	-3
SA-240 Type 316N	531651	. 80	œ	-						
SA-240 Type 316LN	531653	75	o ec	• -	:	:	701	:	16Cr-12Ni-2Mo-N	Plate, sheet, & strip
SA-240 Type 317	007152) !	,	•			2			
:	האלים האלים האלים	2	α	-			701	:	16Cr-12NI-2Mo-N	Plate, sheet, & strip

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

B-427	2	l										19	98	SEC	TIC	N	IX												•			
	Product Form	Plate, sheet, & strip	Plate, sheet, & strlp	Plate, sheet, & strip		Plate, sheet, & strip	of the state of th	Plate, Meet, or strip	Plate cheef & strip	Plate, sheet, & strip	Plate sheet & strip	Plate, sheet, & strio		sheet,	Plate, sheet, & strip	4	Plate, sheet, & strip															
•	Nominal Composition	18Cr-13NI-3Mo	19Cr-15NI-4Mo	19Cr-15.5NI-4Mo	18Cr-13Ni-3Mo-N	22Cr-5Ni-3Mo-N	18Cr-10NI-Ti	18Cr-10Ni-Ti	25Cr-5NI-3Mo-2Cu	25Cr-8NI-3Mo-W-	Cu-N	24 C = 4 M = M = M	JACr-JONI-Ch	18Cr-10NI-Cb	18Cr-10NI-Cb	18Cr-10NI-Cb	18Cr-18NI-2SI	12Cr-1AI	11Cr-Ti	13Cr	13Cr	13Cr-4.5NI-Mo	15Cr	17Cr	17Cr-Ti	18Cr-2Mo	27Cr-1Mo-Ti	27Cr-1Mo	25Cr-4NI-4Mo-TI	26Cr-3Ni-3Mo	29Cr-4Mo	29Cr-4Mo-2NI
ng	.ÿ <mark>Š</mark>	:	:	:	:	:	:	:	:	102		:	:	: :	:		: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Brazing	٩ <u>%</u>	102	102	102	102	:	102	102	102	:	6	701	701	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102
	Group No.	:	:	:	:	:	:	:	:	-		:	:	: :	;		: :	:	:	:	:	:	:	:	•	•	:	:	:	:	:	:
ling	φŜ	:	:	:	:	:	:	:	:	10H		:	:	: :			: :	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Welding	Group No.	-	4	4	-	1	-	-		:	٠.	- -	٠ ,		-		-	-	-	.	1	4	7	~	7	7	1	-	-	7	7	-
	چ چ چ	8	6 0	80	80	10H	6 0	6 0	10H	:			5 «	. &	00	80	. 6 0	7	7	•	7	•	•	7	7	'	101	101	101	10K	107	10K
	Minimum Specified Tensile, ksi	75	75	980	80	90	75	75	110	109	ć	2 8	ş	2 22	75	75	75	09	55	59	09	115	65	\$ 9	65	9	89	99	90	85	80	80
	UNS No.	\$31703	S31725	531726	531753	531803	832100	832109	\$32550	S32760	00000	332700	534700	534709	\$34800	534809	838100	S40500		841000	\$41008	\$41500	842900	243000	543035	244400	544626	544627	\$44635	S44660	844700	244800
	Type or Grade	Type 317L	\$31725	531726	\$31753	531803	Type 321	Туре 321Н	532550	\$32760	7.00	1 yes 527	1 voe 347	Type 347H	Type 348	Type 348H	Type XM-15	Type 405	Type 409	Type 410	Type 410S	S41500	Type 429	Type 430	1 ype 439	S44400	Type XM-33	Type XM-27	S44635	S44660	244700	S44800
	Spec. No.	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	070	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	SA-240	5A-240	SA-240						

ضميمه ۴

مهندس ليما مترمنديان

3

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

دوره أموزشي

42/Prequalification of WPSs

Size Specification 1-2							ations for Matching Stren				
Steel Specification 1-2 Minimum Yield Fansile Tensile Point/Strength Range Point/Strength Tensile A35 Grade B 36 340 60 min 415 min AWS AS 1 AB Point/Strength Fki MPa Rich Cade B AB		Steel Specification R.	equircment	2			File	Metal Reo	nimements		
Steel Specification**1.2 kii MPa MPa kii M			Minimu	m Yield trength	년 3	nsile		Minim	ım Yield	Tensil	Strength
A356 Grade B 36 400 415 400	SK	xel Specification ^{1, 2}	ksi	MP	k.	Z	E)	OHIO.	irengin	- 1	ange
A33 Grade B A106 Grade B A110 Grade B A110 Grade B A110 Grade B A111 Grade A, B, CS, D, DS, E A111 Grade Y35 Grade P A111 Grade Y35 Grade Y35 Grade C A30 Grade B A30 Grade C A31 Grade C A31 Grade C A32 Grade C A32 Grade C A33 Grade C A34 Grade C A35 Grade C A35 Grade C A36 Grade C A37 Grade C A37 Grade C A38 Grade C A38 Grade C A38 Grade C A39 Grade C A30 Grade C A30 Grade C A30 Grade C A31 Grade C A31 Grade C A32 Grade C A32 Grade C A33 Grade C A34 Grade C A35 Grade C A35 Grade C A35 Grade C A36 Grade C A37 Grade C A37 Grade C A38 Grade C A38 Grade C A39 Grade C A30 Grade C A31 Grade C A31 Grade C A32 Grade C A32 Grade C A33 Grade C A34 Grade C A35 Grade C A35 Grade C A36 Grade C A37 Grade C A38 Grade C A38 Grade C A38 Grade C A39 Grade C A30 Grade C	ASTM A36		۲	550	00 00	400 550	\perp	E	MP	ksi	MPa
A130 Grade B	ASTM AS3	Grade B	36	3 6		-					
A131 Grades A, B, CS, D, DS, E 34 289 40 419 E60XX A 51 6 6 min 413 min 6 70 409 Grade B 60 min 413 min 6 70 409 Grade B 73 241 60 min 413 min 6 70 409 Grade A 7381 Grade A 7381 240 60 min 413 min 6 70 409 Grade A 7381 240 60 min 415 min 6 70 409 Grade A 7381 240 60 min 6 70 409 Grade B 73 240 60 min 6 70 70 70 70 70 70 70 70 70 70 70 70 70	ASTM A106	Grede B	ć ×	9 6							
A139 Grade B A500 Grade A A501 Grade A A502 Grade A A503 Grade A A504 Grade B A505 Stanin 414 min AWS A5.57 Grade G A524 Grade I A506 Grade A A525 Grade I A526 Grade B A525 Stanin 400 min AWS A5.17 A526 Grade B A526 Grade B A527 Stanin 400 min AWS A5.17 A527 Grade II A528 Grade I A529 Grade B A529 Grade B A529 Grade B A529 Grade A A529 Grade B A520 Stanin 450 min A15 min AWS A5.20 Grade B A520 Grade G A520	ASTM A131		7 6	2 .		•					
A301 Grade Y33 241 60 min 414 min 4270XX 53-72 365-496 70 min A500 Grade A A Grade A B A 2 B A 2 B A 4 B A 3 B A 2 B A 4 B A 3 B A 4 B A 3 B A 4 B A	ASTM A139		* *	657	2 .	•		*	331	60 min	414 min
A500 Grade A 3 228 45 min 310 min E70XX-X 57-60 390-415 70-75 min A95 A501 Grade B 42 290 58 min 400 min 10 min E70XX-X 58 A501 A516 Grade S 30 250 58 min 400 min 10 min	ASTM A381	Grade V16	ያ ;	147	3	•	_	53-72	365-496	70 min	482 min
Signature Sign	ASTM AS00	Ciacia S	S :	240	8 E	415 min					
Asign		Cinco	33	228	45 min	310 min	_	\$7-60	300.415		
A510 Grade 55 30 58 min 400 min AWS A5.17 Grade 60 32 220 60–80 415-550 F7XX-EXXX Grade 60 32 220 60–80 415-550 F7XX-EXXX A529 Grade 11 30 205 55–75 380-515 F7XX-EXXX A529 Grade 11 30 205 55–80 415-586 AWS A5.237 Grade 30 30 30 60–80 415-586 AWS A5.237 Grade 30 30 30 50–80 415-586 AWS A5.237 Grade 30 30 30 50–80 30 50 min 340 min 340 min 450 min 415 min Grade 65 35 250 53 min 450		Crade B	42	290	58 min	400 min	<u>L</u> .	3			
A516 Grade 55 30 205 55-75 380-515 F6XX-EXXX 48 330 60-80 A524 Grade 60 32 220 60-80 415-556 F7XX-EXXX 58 400 70-95 A529 Grade 11 30 205 55-80 380-550 F7XX-EXX-XX 58 400 70-95 A529 Grade 30 30 205 54-80 380-550 F7XX-EXX-XX 58 400 70-95 A570 Grade 30 30 205 54-80 380-510 GMAW 58 400 70-95 A570 Grade 30 30 20 52 min 360 min 360 min 415 min 67 mi	ASIM ASUL		3 6	250	58 min	400 min					
Grade 60 32 220 60-80 415-550 F7XX-EXX.X 58 400 70-95 A524 Grade 1 30 205 55-80 380-550 F7XX-EXX.X 58 400 70-95 A529 Grade 31 30 205 55-80 380-550 F7XX-EXX.XX 58 400 70-95 A570 Grade 30 30 205 549 min 340 min GMAW 58 400 70-95 A570 Grade 33 33 230 52 min 360 min GMAW 58 400 70-95 Grade 40 40 275 53 min 360 min 488 3400 70 min Grade 40 40 275 55 min 360 min 415 min 560 min 415 min 560 min 460-37 58 400 70 min A573 Grade 56 345 65 min 450-530 FCAW 58 400 70 min Grade 57, B. D. CS, DS 35 240<	ASTM AS16	Grade 55	90	205	55-75	380-515		9	ć	,	:
A524 Grade I 35 240 60-85 415-586 AWS A5.23 50 400 70-95 A529 Grade 30 30 205 55-80 360-550 F7XX-EXX-XX 58 400 70-95 A570 Grade 30 30 205 49 min 340 min GMAW 58 400 70-95 A570 Grade 33 3 230 52 min 360 min GMAW 58 400 70-min Grade 40 40 275 53 min 360 min 485 min 58 min 480 min 58 400 70 min Grade 45 40 275 55 min 480 min 48		Grade 60	32	220	80	415-550	_	9 9	3 5		415-550
Grade II 30 205 \$5-80 380-550 F7XX-EXX-XX \$8 400 70-95 A570 Grade 30 30 205 49 min 340 min<	ASTM A524	Grade I	35	240	60-85	415-586		ŝ	3	26-97	480-650
A529 A520 Grade 30 A570 Grade 33 A570 Grade 34 Grade 35 Grade 35 Grade 40 A571 Grade 40 A573 Grade 45 A573 Grade 45 A709 Grade 55 A709 Grade 58 A709 AWS A5.20 AWS A5.20 AWS A5.29	į	Grade 11	8	205	55-80	380-550		Ş	į		
A570 Grade 30 Grade 33 Grade 33 Grade 34 Grade 35 Grade 36 Grade 36 Grade 36 Grade 36 Grade 36 Grade 40 40 275 55 min 360 min 367 min 450	ASTM A529		42	290	£0-85	415585	L	80	8	70-95	480-660
Grade 33 33 230 52 min 360 min AWS AS.18 Grade 36 Grade 40 Grade 40 40 275 53 min 360 min AWS AS.18 Grade 45 Grade 45 A5 310 60 min 415 min Grade 45 Grade 55 A709 Grade 58 A709 Grade 5A Grade 5A Grade 5A Grade 5A Grade 5A A709 Grade 5A Grade 6A Grad	ASTM AS70	Grade 30	2	205	49 min	340 min					
Grade 36 '36 250 53 min 365 min ER70S-X 58 400 70 min Grade 40 40 273 55 min 360 min 415 min 66 min 415 min 66 min 415 min 66 min 418 min 460 min </td <td></td> <td>Grade 33</td> <td>33</td> <td>230</td> <td>52 min</td> <td>360 min</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Grade 33	33	230	52 min	360 min					
Grade 40 Grade 45 Grade 45 A573 Grade 50 A779 Grade 54 Grade 5A A709 Grade 5A Grade 5A Grade 5A A709 Grade 5A Grade 6A Grade		Grade 36	98.	250	53 min	365 min			;	i	
Grade 45 Grade 50 A573 Grade 55 Grade 58 A709 Grade 58 Grade 58 A709 Grade 58 Grade 58 Grade 58 A709 Grade 58 Grade 58 A709 Grade 58 Grade 58 A709 Grade 58 A700 60 A15 A700 AWS A5.20 A80 70 min A700 AWS A5.29 Grade 58 A700 60 A700 AWS A5.29 Grade 58 A700 AWS A5.29 A700 AWS A5.29		Grade 40	\$	275	55 min	380 min		2	\$	70 min	480 min
A573 Grade 53 50 345 65 min 450 min FCAW A709 Grade 58 35 240 65-77 450-530 FCAW A709 Grade 58 36 250 58-71 400-490 AWS A5.20 A709 Grade 36 36 250 58-80 400 50 Grade B 35 240 60 415 E7XT-X 58 400 70 min Grade A 42 290 60 415 (Except -2, -3, -10, -13, -14, -GS) 58 400 70 min Grade E ⁵ 58-71 400-490 AWS A5.29 59 60 70 min		Grade 45	45	310	60 min	415 min					
A573 Grade 65 A709 Grade 38 Grade B 32 240 65-77 450-530 FCAW Grade B 34 220 58-71 400-490 AWS A5.20 Grade X42 Grade X42 Grade SA Grade S		Grade 50	8	345	65 min	450 min					
Grade 58 A709 Grade 36 Grade B Grade B Grade X42 Grade A 15 Grade E 3 Grade	ASTM A573	Grade 65	35	240	65-77	450-530					
A709 Grade 36 Grade B Grade A15 Grade A25 Grade A25		Grade 58	32	220	SR-71	400 400					
Grade B 35 240 60 415 E7XT-X 58 400 70 min Grade A B, D, CS, DS 58-71 400-490 AWS A5.297 Grade E ⁵	ASTM A709	Grade 364	92	5	\$8.80	410 650					
Grade X42 42 290 60 415 (Except-2, -3, -10, -13, -14, -GS) 8 400 70 min Grades A, B, D, CS, DS 58-71 400-490 AWS AS.297 Grade E ⁵	API SL	Grade B	35	240	3 5	217		4	330	60 min	415 min
Grades A. B. D. CS. DS 58-71 400-400 AWS AS 229? Grade E ⁵ 68-71 400-400		Grade X42	42	290	3 8	7	E/A I-A	88	ş	70 min	480 min
58-71 400 400 Targett 12-83	ABS	Grades A. B. D. CS, DS			<u>5</u>	400 400					
		Grade E ⁵				2					

ضمیمه ۵

شركت كاوش همايش

گروه مهندسین بین المللی جوش ایران

TZ 128 OPP8020 2454870 - 89P1 J9M3-1-10 2UA. QTZ

Prequalification	of WPSs/43
------------------	------------

	Steel Specification Requirements	quiremen	2			Filler M	Filler Metal Requirements	iirements		
			1	F						
	. a	Point/Strength	m Tield trength	Ra	Range		Point	Minimum Tield Point/Strength	I CRSIIC	iensile Strength Range
Stee	Steel Specification ^{1, 2}	ksi	MPa	ksi	MPa	Electrode Specification ^{3.6}	ksi	MPa	ksi	MPs
ASTM AISI	Grades AH32, DH32, EH32	9	315	68-85	470-585	SMAW				
	Grades AH36, DH36, EH36	51	350	71-90	490-620	AWS A5.1				
ASTM A441		40-50	275-345	07-09	415-485	E7015, E7016	88	38	70 min	482 min
ASTM AS16	Grade 65	35	240	65-85	450-585	E7018, E7028				
	Grade 70	38	260	20-02	485-620	AWS A5.57				
ASTM A537	Class 1	45-50	310-345	65-90	450-620	E7015-X. E7016-X	57-60		70-75 min	390-415 70-75 min 480-520 min
ASTM A572	Grade 42	42	230	60 min	415 min	E7018-X				
ASTM AS72	Grade 50	8	345	65 min	450 min	SAW				
ASTM AS885	(4 in. and under)	S	345	70 min	485 min	AWS A5.17				
ASTM A595	Grade A	55	380	65 min	450 min	F7XX-EXXX	28	9	70-95	480-650
	Grades B and C	8	415	70 min	480 min	AWS A5.237				
ASTM A606 ⁵		45-50	310-540	65 min	450 min	F7XX-EXX-XX	88	60	70-95	480-660
ASTM A607	Grade 45	45	310	60 min	410 min	GMAW				
	Grade 50	99	345	65 min	450 min	AWS A5.18				
	Grade 55	55	380	70 min	480 min	ER70S.X	28	9	70 min	480 min
ASTM A618	Grades 1b, II, III	46-50	315-345	65 min	450 min					
ASTM A633	Grade A	42	367	63-83	430-570					
	Grades C. D	20	345	20-90	4R5-620	FCAW				
	(2-1/2 in. and under)					AWS A5.20				
ASTM A709	Grade 50	20	345	65 min	450 min	E/XT-X	88	400	70 min	480 min
	Grade 50W	20	345	70 min	485 min	(Except -2, -3, -10, -13, -14, -GS)				
ASTM A710	Grade A, Class 2 > 2 in.	\$\$	380	65 min	450 min	AWS A5.297				
ASTM A808	(2-1/2 in. and under)	42	280	60 min	415 min	E7XTX-X	28	600	70-90	490-620
API 2H°	Grade 50 Grade 42	314	318	65 min 62-80	450 min					
	Grade 50	8	345	70 min						
API 2W	Grade 42	42-67	290-462	62 min	-					
	Grade 50	50-75	345-517	65 min	448 min					
	Grade 50T	50-80	345-552	70 min	483 min					
API 2Y	Grade 42	42-67	290-462	62 min	427 min					
	Grade 50	50-75	345-517	65 min	448 min					
	Grade 50T	50-80	345-552	70 min	483 min					
API SL	Grade X52	25	340	66 72	455-495					
ABS	Grades AH32, DH32, EH32	45.5	315	71-90	490-620					
			,							

بهتدس ليعا هنرمنديان

گروه مهندسین بین المللی جوش ایران/ ۱۳۲۹

دوره آموزشی

ين بين المللي جوش ايران

1998 0508491 798 -ENGL

Filler Metal Requirements Minimum Yield PoinvStrength 4c Specification ^{3.6} ksi MPa VS A5.57 E8016-X 67-80 460-550 37 K-XX 68 470 87 68 470 75 A5.297	İ					=		T0(3)	(Continued)	·			
Steel Specification!-2 ksi MPa ksi MPa Electrode Specification!-6 ksi MPa Individuent Yield Point/Strength Range Grade 60 60-90 414-621 75 min 517 min 518 min 5	, ·		Sieel Sp	ecification	tequiremen	ıls			Filler	Metal Requ	irements		
Steel Specification ^{1,2} ksi MPa MPa MPa ksi MPa MPa ksi MPa MPa <th></th> <th></th> <th></th> <th></th> <th>Minimu Point</th> <th>um Yield Strength</th> <th>Ten</th> <th>sile</th> <th></th> <th>Minimu Point/9</th> <th>m Yield</th> <th>Tensile</th> <th>Strength</th>					Minimu Point	um Yield Strength	Ten	sile		Minimu Point/9	m Yield	Tensile	Strength
Grade 60 60-90 414-621 75 min 517 min SMAW AWS A5.57 67-80 460-530 A572 Grade 60 60-90 414-621 75 min 517 min E8018-X. E8016-X. 67-80 460-530 A572 Grade 60 60 415 75 min 517 min E8018-X 67-80 460-530 A537 Class 25 46-60 315-415 80-100 550-690 AWS A5.237 68 470 A710 Grade A, Class 25 52 in. 60-65 415-450 72 min 495 min AWS A5.287 68 470 A9139 Grade 60 60-65 415-450 72 min 495 min 550 min ER80S-X 68 470 A9139 Grade 60 60 415 75 min 550 min ER80S-X 68 470 A9139 Grade 60 65 450 80 min 550 min ER80S-X 68 470		Ste	el Specification ^{1, 2}		ksi	MPa	Ē	MPa	Electrode Specification 3.6	194	MPs		MP
Grade 60 60-90 414-621 75 min 517 min EB015-X, EB016-X 67-80 460-530 A572 Grade 60 60 415 75 min 515 min 517 min EB018-X 67-80 460-6530 A537 Class 25 46-60 315-415 80-100 550-690 ANS A5.237 68 470 A710 Grade A, Class 2 52 in. 60-65 415-450 72 min 495 min ANS A5.287 68 470 A9139 Grade 60 60 415 75 min 495 min 520 min ER80S-X 68 470 A9139 Grade 60 65 450 80 min 550 min ER80S-X 68 470 A9130 550 min 550 min 550 min 550 min 550 min 56 470	Į	Ain 2W	Grade 60		06-09	414-621	75 min	\$17 min	2				PJM
4572 Grade 60 60 415 75 min 515 min EB018-X Grade 65 65 450 80 min 550 min EB018-X Grade 65 65 450 80 min 550 min EB018-X A710 Grade A, Class 2 5 2 in. 60-65 415-450 72 min 495 min AWS A5.28 ⁷ Grade 60 65 415-450 70 min 485 min ER80S-X Grade 65 65 450 80 min 550 min ER80S-X FRXTX.X Grade 65 65 450 80 min 550 min FCAW AWS A5.29 ⁷ FRXTX.X Grade 65 65 450 80 min 550 min FCAW AWS A5.29 ⁷ FRXTX.X		API 2Y	Grade 60		9	414-62	75 min	\$17 min		08 17	440 640	::- 00	
Grade 65 65 450 80 min 550 min SAW Class 25 46–60 315–415 80–100 550–690 AWS A5.237 68 470 Grade A, Class 2 ≤ 2 in. 60–65 415–450 72 min 495 min GMAW 68 470 Grade A, Class 3 > 2 in. 60–65 415–450 72 min 495 min AWS A5.287 68 470 Grade 60 60 415 75 min 550 min FR80S-X 68 470 Grade 65 65 450 80 min 550 min FRXTX.X 69 470		ASTM AS72	Grade 60		8	415	75 min	S15 min		00-10	000-004		NIM DCC
Class 25 46-60 315-415 80-100 550-690 AWS A5.237 68 470 Grade B, Class 2 ≤ 2 in. 60-65 415-450 72 min Grade A, Class 3 > 2 in. 60-65 415-450 70 min 485 min Grade 60 Grade 60 60-65 415-450 70 min 485 min 520 min FCAW AWS A5.287 68 470 Grade 60 60 415 75 min 520 min 550 min 55			Grade 65		\$9	450	80 min		CAW				
Grade E3 55-60 380-415 75-100 515-69 FRXX-EXX-XX 68 470 Grade A, Class 3 2 in. 60-65 415-450 72 min 495 min AWS A5.287 68 470 Grade 60 60 415 75 min 520 min FCAW AWS A5.297 68 470 Grade 65 65 450 80 min 550 min FCAW AWS A5.297 69 470		ASTM AS37	Class 25		99-69	315-415	80-100	250,690	AWS 45 237				
Grade A, Class 2 \$2 in. \$60-65 \$415-450 72 min \$45 min \$60-65 \$415-450 70 min \$485 min \$485 min \$480.5.X \$68 \$470 Grade 60 60 415 75 min \$50 min \$50 min \$68 \$470 Grade 65 65 450 \$60 min \$50 min \$50 min \$60 min	_	ASTM A633	Grate E ⁵		55-60	380-415	75-100	215-690	FRYSHAM	9	97		
Grade 60 60 65 415 75 min 520 min AWS A5.28² 68 470 Grade 65 65 450 80 min 550 min 550 min FCAW AWS A5.29² 68 470		ASTM A710	Grade A, Class 2	52 in.	89	415.450	75 min	405 min	WAND WAND	8	2	30-100	220-090
Grade 65 65 450 80 min 520 min FCAW AWS A5.297 68 470		ASTM A710	Grade A, Class 3	> 2 in.	88	415-450	70 min	485 min	AWS A5 287				
65 450 80 min 550 min FCAW AWS A5.297 69 470		ASTM A913	Grade 60		81	45		520 min	ER80S-X	89	470	80 min	\$50 min
027 67			Grade 65		S ;	Ž.	80 min	550 min	FCAW AWS A5.297				
									E8XTX.X	ď	700	8	007 033

1. Is joints involving base metals of different groups, either of the following filter metals may be used: (1) that which matches the higher strength base metal, or (2) that which matches the lower strength base metal and produces a low-hydrogen deposit. Preheating shall be in conformance with the requirements applicable to the higher strength group. ;
2. Match AFI standard 2B (fabricated tubes) according to steel used.

When welds are to be stress relieved, the deposited weld metal shall not exceed 0.05 percent vanadium.
 Only low-hydrogen electrodes shall be used when welding A36 or A709 Grade 36 steet more than 1 in. (25.4 mm) thick for cyclically loaded structures.
 Special welding materials and WPS (e.g., E80XX.X low alloy electrodes) may be required to match the notch toughness of base metal (for a phications involving impact loading or low temperature), or

6. The designation of ER70S-18 has been reclassified as ER80S-D2 in A5.28-79. Prequalified WPSs prepared prior to 1981 and specifying AWS A5.18, ER70S-1B, may now use AWS A5.28-79 ER80S-D2 for atmospheric corrosion and weathering characteristics (see 3.7.3).

7. Filter nectals of alloy group B.3, B.4L, B.4, B.5, B.5L, B.6, B.6L, B.7, B.7L, B.8. B.8L, or B.9 in ANSVAWS AS.5, AS.23, AS.28, or AS.29 are not prequalified for use in the as-welded condition.

8. See Tables 2.3 and 2.5 for allowable stress requirements for matching filler metal.

9. The hear input limitations of 5.7 shall not apply to ASTM A913 Grade 60 or 65. when welding steels in Groups I and II.

شركت كاوش همايش

QW-430

1998 SECTION IX

QW-432

QW-430 F-NUMBERS

QW-431 General

The following F-Number grouping of electrodes and welding rods in QW-432 is based essentially on their usability characteristics, which fundamentally determine the ability of welders to make satisfactory welds with a given filler metal. This grouping is made to reduce the number of welding procedure and performance qualifications, where this can logically be done. The grouping does not imply that base metals or filler metals within a group may be indiscriminately substituted for

a metal which was used in the qualification test without consideration of the compatibility of the base and filler metals from the standpoint of metallurgical properties, postweld heat treatment design and service requirements, and mechanical properties.

QW-432.1 Steel and Steel Alloys
QW-432.2 Aluminum and Aluminum-Base Alloys
QW-432.3 Copper and Copper-Base Alloys
QW-432.4 Nickel and Nickel-Base Alloys
QW-432.5 Titanium and Titanium Alloys
QW-432.6 Zirconium and Zirconium Alloys
QW-432.7 Hard-Pacing Weld Metal Overlay

A99 A00

QW-432 F-NUMBERS Grouping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AWS Classification
	Steel and Steel Alloys	
1	\$FA-5.1	EXX20
ī	SFA-5.1	EXX22
ī	SFA-5.1	EXX24
i	SFA-5.1	- EXX27
1	SFA-5.1	EXX28
ī	SFA-5.4	EXXX(X)-25
1	SFA-5.4	EXXX(X)-26
i	SFA-5.5	EXX20-X
i	SFA-5.5	EXX2T-X
2	SFA-5.1	EXX12
2	SFA-5.1	EXX13
2	SFA-5.1	EXX14
2	SFA-5.1	EXX19
2	SFA-5.5	E(X)XX13-X
3	SFA-5.1	EXX10
3	SFA-5.1	_ EXX11
3	SFA-5.5	E(X)XX10-X
3	SFA-5.5	E(X)XX11-X
4	SFA-5.1	EXX15
4	SFA-5.1	EXX16
4	SFA-5.1	EXX18
4	SFA-5.1	EXX18M
4	SFA-5.1	· EXX48
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-15
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-16
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-17

ضمیمه ۶

مهندس ليما هنرمنديان

گروه مهندسین بین الطانی جوش ایران/ ۱۳۷۹

. محفوظ م متعلق به شدکت کاوش هماش م

دوره اموزشي

<9

آشنایی با تست و دستورالعمل جوشكارى

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

WELDING DATA

QW-432

QW-432 (CONT'D) F-NUMBERS nuping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AWS Classification
	Steel and Steel Alloys (cont'd)	
		E(X)XX15-X
4	SFA-5.5	E(X)XX16-X
4	SFA-5.5	E(X)XX18-X
4	\$FA-5.5	E(X)XX18M
4	SFA-5.5	ECX)XX16M1
4	\$FA-5.5	EWINNE
5	\$FA-5.4 austenitic and duplex	EXXX(X)-15
5	SFA-5.4 austenitic and duplex	EXXX(X)-16
5	SFA-5.4 austenitic and duplex	EXXX(X)-17
	5FA-5.2	All classifications
6	SFA-5.9	All classifications
6	SFA-5.17	Ail classifications
6	SFA-5.18	All classifications
6	SFA-5.20	Ail classifications
6	SFA-5.22	All classifications
6	SFA-5.23	All classifications
6	SFA-5.25	All classifications
6	SFA-5.26	All classifications
6	SFA-5.28	All classifications
6	SFA-5.29	All classifications
6	SFA-5.30	INMs-X
6	SFA-5-30	INSXX
6	SFA-5.30 SFA-5.30	IN3XX(X)
6		••••
	Aluminum and Aluminum Alloys	
21	SFA-5.3	E1100
21	SFA-5.3	E3003
21	SFA-5.10	ER1100
21	SFA-5.10	R1100
21	SFA-5.10	ER1188
21	SFA-5.10	R1188
22	SFA-5.10	ER5183
22	SFA-5.10	R5183
22	SFA-5.10	ER5356
22	SFA-5.10	R5356
22	SFA-5.10	ER5554
22 22	SFA-5.10	P5554
22 22	SFA-5.10	ER5556
22 22	SFA-5.10	R5556
22 22	SFA-5.10	ER5654
22 22	SFA-5.10	R5654
	SFA-5-3	E4043
23 23	SFA-5.10	ER4009
	SFA-5.10	R4009
23	SFA-5.10	ER4010
23		R4010
23	\$FA-5.10	R4011
23	SFA-5.10	ER:043
23	\$FA-5.10	R4043
23 75,5	SFA-5.10	ER4047
23	SFA-5.10	R4047
23	\$FA-5.10	
23	SFA-5.10	ER4145

۲.

آشنایی با تست و دستورالعمل جوشکاری

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-432 (CONT'D) F-NUMBERS Grouping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AW\$ Classification
	Aluminum and Aluminum	Alloys (cont'd)
23	SFA-5.10	R4145
23	SFA-5.10 SFA-5.10	ER4643
23	3FA-5.10	R4643
24	\$FA-5.10	R206.0
24	SFA-5.10	R-C355.0
24	SFA-5.10	R-A356.0
24	SFA-5.10	R357.0
24	SFA-5.10	R-A357.0
25	SFA-5.10	ER2319
25	SFA-5.10	R2319
	Copper and Copper	Alloys
31	SFA-5.6	
31	SFA-5.7	ECu ERCu
	5. F. 5	ERCU
32	SFA-5.6	ECuSi
32	SFA-5.7	ERCUSI-A
••	. CEA 5.4	
33 33	SFA-5.6 SFA-5.6	ECusn-A
33	SFA-5.7	ECUSn-C ERCUSn-A
	• · · · • · · ·	Endudina
34	\$FA-5.6	· ECuNI
34	\$FA-5.7	ERCUNI
34	\$FA-5.30	IN67
35	SFA-5.8	RBCuZn-A
35	\$FA-5.8	RBCuZn-B
15	SFA-5.8	RBCuZn-C
15	SFA-5.8	RBCuZn-D
i6	SFA-5.6	50.41.40
36	SFA-5.6	ECuAl-A2 ECuAl-B
16	SFA-5.7	ERCUAI-A1
6	SFA-5.7	ERCUAL-A2
6	SFA-5.7	ERCUAI-A3
_	APA # 4	·
7 7	SFA-5.6 SFA-5.6	ECUNIAI
7	SFA-5.7	ECUMNNIAI ERCUNIAI
, 7	SFA-5.7	ERCLMONIAI ERCLMONIAI
	Nickel and Nickel A	ioys
	SFA-5.11	ENI-1
1	SFA-5.14	ERNI-1
l	SFA-5.30	IN61
2	SFA-5.11	ENICU-7
! .	SFA-5.14	ERNICu-7
!	SFA-5.14	ERNICu-8
}	SFA-5.30	IN60

ضمیمه ۶

شرکت کاوش همایش

QW-432

كروه مهندسين بين المللي جوش ايران

WELDING DATA

QW-432 (CONT'D) F-NUMBERS

Grouping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AWS Classification
	Nickel and Nickel Allo	rs (cont'd)
	·	ENICTFe-1
43	SFA-5.11 SFA-5.11	ENICFFE-2
43	SFA-5.11	ENICFFe-3
43 43	SFA-5.11	ENICrFe-4
43	SFA-5.11	ESiorFe-7
43	SFA-5.11	ENICrFe-9
43	SFA-5.11	ENICrFe-10
43	SFA-5.11	ENICrMo-2
43	SFA-5.11	ENICrMo-3
43	SFA-5.11	ENICrMo-6
43	\$FA-5.11	ENICrMo-12
43	SFA-5.11	ENICrCoMo-1
43	SFA-5.14	ERNIC-3
43	SFA-5.14	ERNICr-4
43	SFA-5.14	ERNICT-6
43	SFA-5.14	ERNICrFe-5
43	\$FA-5.14	ERNICrFe-6
43	\$FA-5.14	ERNICFFe-7
43	\$FA-5.14	ERNICFF-8
43	SFA-5.14	ERNICFFe-11
43	SFA-5.14	ERNICCOMO-1
43	SFA-5.14	ERNICrMo-2
43	SFA-5.14	ERNICrMo-3
43	SFA-5.30	INGA
43	SFA-5.30	IN62
43	\$FA-5.30	1N82
44	SFA-5.11	ENIMO-1
44	SFA-5.11	ENIMo-3
44	SFA-5.11	ENIMO-7
44	SFA-5.11	ENIMo-8
44	\$FA-5.11	ENIMo-9
44	SFA-5.11	ENIMO-10
44	SFA-5.11	ENICrMo-4
44	\$FA-5.11	ENICAMO-5
44	\$FA-5.11	ENIC MO-7 ENIC MO-10
44	SFA-5.11	Enicrmo-10 Enicrmo-13
44	SFA-5.11	• • • • • • • • • • • • • • • • • • • •
44	SFA-5.11	ENICHMO-14
44	SFA-5.14	ERNIMO-1 Ernimo-2
14	SFA-5.14	ERNIMO-2
44	SFA-5.14	ERNIMO-7 (B2)
44	SFA-5.14	ERNIMO-8
64	SFA-5.14 SFA-5.14	ERNIMO-9
14	SFA-5.14	ERNIMo-10
14 14	SFA-5.14	ERNICAMO-4
14 14	SFA-5.14	ERNICEMO-7 (Alloy C
14 14	SFA-5.14	ERNICTMo-10
14 14	SFA-5.14	ERNICIMO-13
1 4 14	SFA-5.14	ERNICrMo-14
4	SFA-5.14	ERNICHWM0-1
iC	SFA-5.11	ENICrMo-1
15 15	SFA-5.11	ENICIMO-1

حروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-432

1998 SECTION IX

QW-432 (CONT'D) F-NUMBERS

Grouping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AWS Classification
	Attack and Attack Ass	
	Nickel and Nickel Allo	ys (cont'd)
45	SFA-5.11	ENiCrMo-11
45	SFA-5.14	ERNIC: Mo-1
45	SFA-5.14	ERNIC/Mo-8
45	\$FA-5.14	ERNICrMo-9
45	SFA-5.14	ERNICrMo-11
45	SFA-5.14	ERNiFeCr-1
	Titanium and Titaniu	m Alloys
51	SFA-5.16	ERTI-1
51	SFA-5.16	ERTI-2
51	SFA-5.16	ERTI-3
51	\$FA-5.16	ERTI-4
52	SFA-5.16	ERTi-7
53	SFA-5.16	ERTI-9
53	SFA-5.16	ERTI-9ELI
54	SFA-5.16	ERTI-12
55	SFA-5.16	ERTi-5
55	SFA-5.16	ERTI-SELI
55	SFA-5.16	ERTi-6
55	\$FA-5.16	ERTI-6ELI
55	SFA-5.16	ERTi-15
	Zirconium and Zirconiu	m Alloys
61	SFA-5.24	ERZr2
61	SFA-5.24	ERZr3
61	SFA-5.24	ERZr4
	Hard-Facing Weld Meta	! Overlay
71	SFA-5.13	All classifications
72	SFA-5.21	All classifications

ضمیمه ۶

E.

آشنایی با تست و دستورالعمل جوشكاري

شرکت کاوش همایش كروه مهندسين بين المللي جوش ايران

QW-460

1998 SECTION IX

QW-461.1

QW-460 **GRAPHICS**

OW-461 **Positions**

Position	Diegram Reference	Inclination of Axis, deg.	Rotation of Face, deg
Flat	A	0 to 15	150 to 210
Horizontal	В	0 to 15	80 to 150 210 to 280
Overniead	С	0 tc 80	0 to 80 280 to 360
	D	15 to 80	80 to 280
Vertical	E	80 to 90	0 to 360

101 E 210 aeg Horizontal plane

GENERAL NOTE:

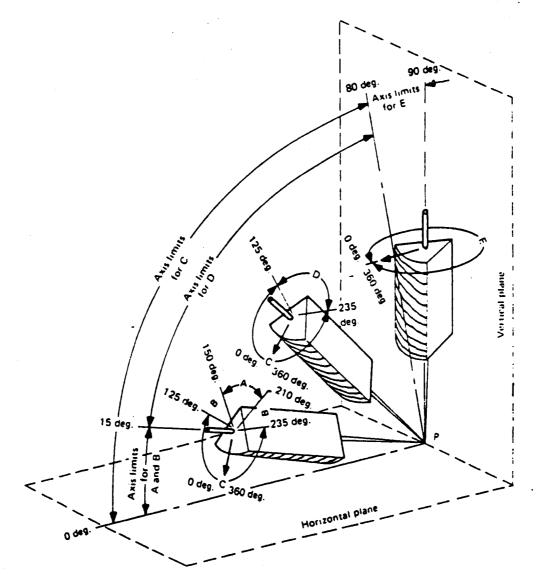
The horizontal reference plane is taken to lie always below the weld under consideration.

Inclination of axis is measured from the horizontal reference plane

Angle of rotation of face is measured from a line perpendicular to the axis of the weld and lying in a vertical plane containing this axis. The reference position (0 deg.) of rotation of the face invariably points in the direction opposite to that in which the axis angle increases. The angle of rotation of the face of weld is measured in a clockwise direction from this reference position (0 deg.) when looking at point

QW-461.1 POSITIONS OF WELDS - GROOVE WELDS

ضمیمه ۷


كروه مهندسين ببن المللي جوش ايران

شركت كاوش همايش

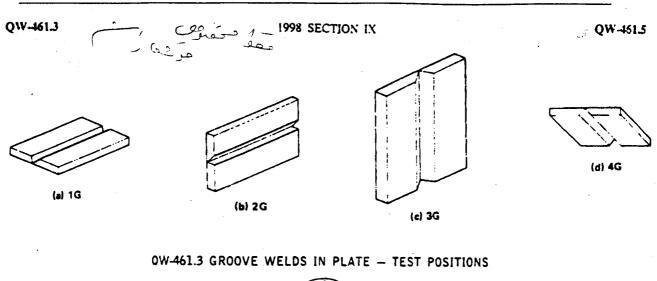
WELDING DATA

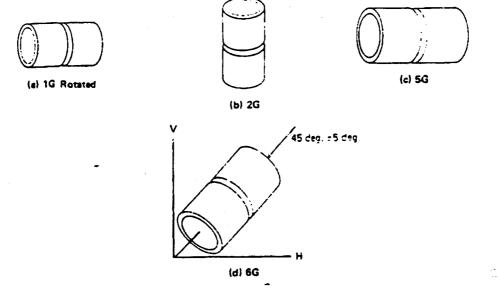
QW-461.2

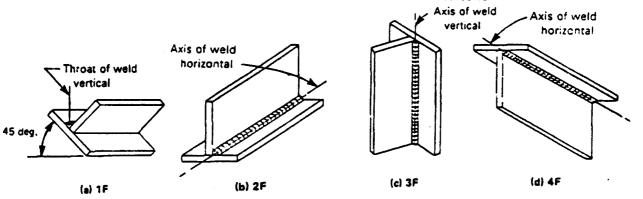
1	labulation of Po	sitions of Fillet V	Velds
Position	Diagram Reference	Inclination of Axis, deg.	Rotation of Fece, deg
Flat	A	0 to 15	150 to 210
Horizontal	 8	0 to 15	125 to 150 210 to 235
Overhead	С	0 to 80	0 to 125
	D	15 to 80	125 to 235
Vertical	E	80 to 90	0 to 360

QW-461.2 POSITIONS OF WELDS - FILLET WELDS

(




آشنایی با تست و دستورالعمل جوشکاری

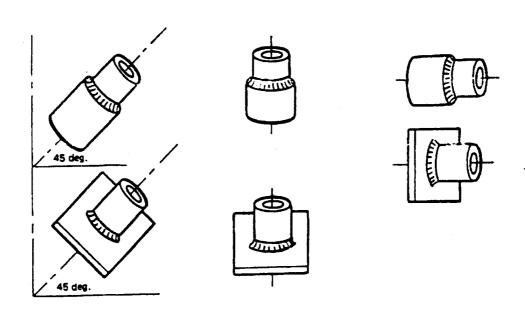

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

OW-461.4 GROOVE WELDS IN PIPE - TEST POSITIONS

QW-461.5 FILLET WELDS IN PLATE - TEST POSITIONS

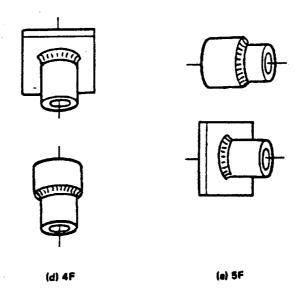
ضمیمه ۷	



شرکت کاوش همایش

كروه مهندسين بين العللي جوش ايران

WELDING DATA


QW-461.6

(a) 1F (Rotated)

(b) 2F

(c) 2FR (Rotated)

QW-461.6 FILLET WELDS IN PIPE - TEST POSITIONS

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

■ 042 EP#6020 2454870 ■ 8PP£ 19M3-1.10 2WA. 4T2

46/Preq	ualification	of	WPSs
---------	--------------	----	-------------

					Thickness o	Thickness of Thickest Part	Minimum Preheat and	theat and
						0		
	Stee	Steel Specification		Welding Process	.9	ļ	;	
ASTM A36		ASTM AS16		9		EE	-	ပ္
ASTM A53	Grade B	ASTM AS24	Grades I & II		1/8 to 3/4 incl.	3 to 19 incl.	None	-3
ASTM A106	Grade B	ASTM A529	1		45			
ASTM A 131	Grades A. B.	ASTM A570	All grades	Shinland Laboration	Over 3/4	Over 19		
	CS, D, DS, E	ASTM A573	Grade 65	welding with other	Cor I-1/2 noci.	thru 38.1 incl.	150	8
ASTM A139	Grade B	ASTM A709	Grade 36	Actually with our				
ASTM A381	Grade Y35	API SL	Grade B	man low-hydrogen	Over 1-1/2	Over 38.1		
ASTM A500	Grade A		Grade X42	ciccinodes	Chara 2-1/2 incl.	thru 63.5 incl.	225	101
	Grade B	ABS	Grades A. B. D. CS. DS					
ASTM ASOI			Grade E		;			
ASTM A36		ASTM AS70	All grades		OVET 2-1/2	Over 63.5	300	150
ASTM A53	Grade B	ASTM AS72	Grades 42, 50					
ASTM A 106	Grade B	ASTM A573	Grade 65					
ASTM A131	Grades A, B,	ASTM AS88						
	CS, D, DS, E	ASTM A595	Grades A. B. C		1.6 0.7 1.6			
	AH 32 & 36	ASTM A606			1/8 to 3/4 their.	s to 19 incl.	None	-
	DH 32 & 36	ASTM A607	Grades 45, 50, 55					
	EH 32 & 36	ASTM A618	Grades 1b, 11, 111					
ASTM A139	Grade B	ASTM A633	Grades A. B					
			Grades C. D	Shielded metal am		;		
ASTM A381	Grade Y35	ASTM A709	Grades 36, 50, 50W	Welding with low	OVET 3/4	Over 19 thru		
		ASTM A710	Grade A, Class 2 (> 2 in.)	hydrogen electrodes,	-1/2 IIKI.	36.1 Incl.	8	2
		A CTDA A COLD		submerged are				
ASTM A441		API SI	2	welding, 2 gas metal				
ASTM AS00	Grade A		Crace	arc welding. flux				
	Grade 13	A DI C 311	Orade X42	cored are welding				
		Ari spec. 4n	Grades 42, 50		Ova 1-1/2	Over 38 1 tho		
		API 2W	Grades 42, 50, 50T					
ASTM ASOL		API 2Y	Grades 42, 50, 50T					
ASTM AS16	Grades \$5 & 60		Offices Art 52 & 56		thru 2-1/2 incl.	63.5 incl.	5	ž
	65 & 70		DH 32 & 36				}	3
ASTM AS24	Grades I & 11	A De	En 32 & 36					
ASTM AS29		Sac	Crades A. B. D.	•				
						•		

ضميمه ۸ 🚅 💮 💮

34000004

شرکت کاوش همایش

كروه مهندسين بين العللي جوش ايران

STD.AWS D1-1-ENGL 1998 ### 0784265 0508494 4T7

Prequalification of WPSs/4

The new that have metal temperature is below 32°F (0°C), the base metal shall be preheated to at least 70°F (21°C) and this minimum temperature maintained during welding.

2. For modification of preheat requirements for submerged are welding with parallel or multiple electrodes, see 3.5.3.

3. See 5.12.2 and 5.6 for antitient and base-metal temperature requirements.

4. The heat input limitations of 5.3 shall not apply to ASTM A913 Grade 60 or 65.

گروہ مهندسین بین العللی جوش ایران

UCS-56

1998 SECTION VIII - DIVISION I

UCS-56

TABLE UCS-56 POSTWELD HEAT TREATMENT REQUIREMENTS FOR CARBON AND LOW ALLOY STEELS

	ح مدكرو Normal Holding	الرحاليج اصا	Temperature V-40(f)]	
Material	ر در مولاد در Femperature, در مولاد در ۴۴, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No. 1 - Gr. Nos. 1, 2, 3	1100	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plus 15 min for each addi- tional inch over
Gr. No. 4	NA PALICADO	None	None	2 in. None

- (1) Wher, it is impractical to postweld heat treat at the temperature specified in this Table, it is permissible to carry out the postweld heat treatment at lower temperatures for longer periods of time in accordance with Table UCS-56.1.
- (2) Postweld heat treatment is mandatory under the following conditions:
 - (a) for welded joints over $1\frac{1}{2}$ in, nominal thickness
 - (b) for welded joints over 1½ in. nominal thickness through 1½ in. nominal thickness unless preheat is applied at a minimum temperature of 200°F during welding على المسل الم of 200°F during welding
 - (c) for welded joints of all thicknesses if required by UW-2, except postweld heat treatment is not mandatory under the conditions specified below:
 - (1) for groove welds not over $\frac{1}{2}$ in, size and fillet welds with a throat not over $\frac{1}{2}$ in, that attach nazzle connections that have a finished inside diameter not greater than 2 in., provided the connections do not form ligaments that require an increase in shell or head thickness, and preheat to a minimum temperature of 200°F is applied;
 - (2) for groove welds not over ½ in. in size or fillet welds with a throat thickness of ½ in. or less used for attaching nonpressure parts to pressure parts provided preheat to a minimum temperature of 200°F is applied when the thickness of the pressure part exceeds
 - (3) for studs welded to pressure parts provided preheat to a minimum temperature of 200°F is applied when the thickness of the pressure part exceeds 11/2 in.:
 - (4) for corrosion resistant weld metal overly cladding or for welds attaching corrosion resistant applied lining (see UCL-34) provided preheat to a minimum temperature of 200°F is maintained during application of the first layer when the thickness of the pressure part exceeds 11/4 in.

NA = not applicable

be continuous. It may be an accumulation of time of multiple postweld heat treatment cycles.

- (c) When pressure parts of two different P-Number groups are joined by welding, the postweld heat treatment shall be that specified in either of Tables UCS-56 or UHA-32, with applicable notes, for the material requiring the higher postweld temperature. When nonpressure parts are welded to pressure parts, the postweld heat treatment temperature of the pressure part shall
- (d) The operation of postweld heat treatment shall be carried out by one of the procedures given in UW-40 in accordance with the following requirements.
- (1) The temperature of the furnace shall not exceed 8J0°F (427°C) at the time the vessel or part is placed in it.
- (2) Above 800°F (427°C), the rate³ of heating shall be not more than 400°F/hr (200°C/hr) divided by the maximum metal thickness of the shell or head

plate in inches, but in no case more than 400°F/hr (222°C/hr). During the heating period there shall not be a greater variation in temperature throughout the portion of the vessel being heated than 250°F (139°C) within any 15 ft (4.6 m) interval of length.

- (3) The vessel or vessel part shall be held at or above the temperature specified in Table UCS-56 or Table UCS-56.1 for the period of time specified in the Tables. During the holding period, there shall not be a greater difference than 150°F (83°C) between the highest and lowest temperature throughout the portion of the vessel being heated, except where the range is further limited in Table UCS-56.
- (4) During the heating and holding periods, the furnace atmosphere shall be so controlled as to avoid excessive oxidation of the surface of the vessel. The furnace shall be of such design as to prevent direct impingement of the flame on the vessel.

³The rates of heating and cooling need not be less than 100°F/hr. However, in all cases consideration of closed chambers and complex

structures may indicate reduced rates of heating and cooling to avoid structural damage due to excessive thermal gradients.

صمیمه ۹

UCS-56

PART UCS - CARBON AND LOW STEEL ALLOY VESSELS

S-56

TABLE UCS-56 (CONT'D) POSTWELD HEAT TREATMENT REQUIREMENTS FOR CARBON AND LOW ALLOY STEELS

	Normal Holding		Temperature V-40(f)]	
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over in.
P-No. 3 Gr. Nos. 1, 2, 3	1100	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plus 15 min for ears addi- tional son over 2 in.

NOTES:

- (1) When it is impractical to postweld heat treat at the temperatures specified in this Table, it is permissible to carry out the postweld heat treatment at lower temperatures for longer periods of time in accordance with Table UCS-56.1.
- (2) Postweld heat treatment is mandatory on P-No. 3 Gr. No. 3 material in all thicknesses.
- (3) Except for the exemptions in Note (4), postweld heat treatment is mandatory under the following conditions:
 - (a) on P-No. 3 Gr. No. 1 and P-No. 3 Gr. No. 2 over 1/6 in. nominal thickness. For these materials, postweld heat treatment is mandatory on material up to and including 1/6 in. nominal thickness unless a welding procedure qualification described in UCS-56(a) has been made in equal or greater thickness than the production weld.
 - (b) on material in all thicknesses if required by UW-2.
- (4) For welding connections and attachments to pressure parts, postweld heat treatment is not mandatory under the conditions specified below:
 (a) for attaching to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) or nonpressure parts with groove welds not over ½ in. in size or fillet welds that have a throat thickness of ½ in. or less, provided preheat to a minimum temperature of 200°F is applied
 - (b) for circumferential butt welds in pipe or tube where the pipe or tube have both a nominal wall thickness of ½ in. or less and a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits)
 - (c) for study welded to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) provided preheat to a minimum temperature of 200°F is applied
 - (d) for corrosion resistant weld metal overlay cladding or for welds attaching corrosion resistant applied lining (see UCL-34) when welded to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) provided preheat to a minimum temperature of 200°F is maintained during application of the first layer.
- (5) Above 800°F (427°C), cooling shall be done in a closed furnace or cooling chamber at a rate³not greater than 500°F/hr divided by the maximum metal thickness of the shell or head plate in inches, but in no case more than 500°F/hr (278°C). From 800°F (427°C) the vessel may be cooled in still air.
- (e) Except as permitted in (f) below, vessels or parts of vessels that have been postweld heat treated in accordance with the requirements of this paragraph shall again be postweld heat treated after welded repairs have been made.
- (f) Weld repairs to P-No. 1 Group Nos. 1, 2, and 3 materials and to P-No. 3 Group Nos. 1, 2, and 3 materials and to the weld metals used to join these materials may be made after the final PWHT but prior to the final hydrostatic test, without additional PWHT, provided that PWHT is not required as a service requirement in accordance with UW-2(a), except for the exemptions in Table UCS-56, or as a service
- requirement in accordance with UCS-68. The welded repairs shall meet the requirements of (!) through (6) below. These requirements do not apply when the welded repairs are minor restorations of the material surface, such as those required after removal of construction fixtures, and provided that the surface is not exposed to the vessel contents.
- (1) The Manufacturer shall give prior notification of the repair to the user or to his designated agent and shall not proceed until acceptance has been obtained. Such repairs shall be recorded on the Data Report.
- (2) The total repair depth shall not exceed $1\frac{1}{2}$ in. (38 mm) for P-No. 1 Group Nos. 1, 2, and 3 materials and $\frac{5}{8}$ in. (16 mm) for P-No. 3 Group Nos. 1, 2, and 3 materials. The total depth of a weld repair shall be taken as the sum of the depths for repairs made from both sides of a weld at a given location.
- (3) After removal of the defect, the groove shall be examined, using either the magnetic particle or the

سرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

Table UCS-56

61

1998 SECTION VIII - DIVISION I

TABLE UCS-56 (CONT'D) POSTWELD HEAT TREATMENT—REQUIREMENTS FOR CARBON AND LOW ALLOY STEELS

	Mormal Holding	Minimum Holding Time at Normal Temperature for Nominal Thickness (See UW-40(f))		
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in
P-No. 4 Gr. Nos. 1, 2	1100	1 hr/in., 15 min	1 hr/in.	5 hr plus 15 min for each addi-
Gr. 1493. 1, 2	*-	minimum		tional inch over

NOTES:

- (1) Except for exemptions in Note (2), postweld heat treatment is mandatory under the following conditions:
 - (a) on material of SA-202 Grades A and B over $\frac{1}{2}$ in, nominal thickness. For these materials postweld heat treatment is mandatory up to and including $\frac{1}{2}$ in, nominal thickness unless a welding procedure qualification described in UCS-56(a) has been made in equal or greater thickness than the production weld.
 - (b) on material of all thicknesses if required by UW-2
 - (c) on all other P-No. 4 Gr. Nos. 1 and 2 materials.
- (2) Postweld heat treatment is not mandatory under the conditions specified below:
 - (a) for circumferential butt welds in pipe or tube of P-No. 4 materials where the pipe or tubes comply with all of the following conditions:
 - (1) a maximum nominal outside diameter of 4 in.;
 - (2) a maximum nominal thickness of 1/2 in.;
 - (3) a maximum specified carbon content of not more than 0.15% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits);
 - (4) a minimum preheat of 250°F.
 - (b) for P-No. 4 pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), and (2)(a)(3) above, having nonpressure attachments fillet welded to them provided:
 - (1) the fillet welds have a maximum throat thickness of 1/2 in.;
 - (2) a minimum preheat temperature of 250°F is applied.
 - (c) for P-No. 4 pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), and (2)(a)(3) above, having studies welded to them, a minimum preheat temperature of 250°F is applied.

_	Normal Holding		Temperature V-40(f)}	
- Material	Temperature, °F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-Nos. 5A, 5B Gr. No. 1, and 5C Gr. No. 1	1250	1 hr/in., 15 min minimum	1 hr/in.	5 hr plus 15 min for each addi- tional inch over 5 in.
P-No. 5B Gr. No. 2	1300			

NOTES

- (1) Except for exemptions in Note (2), postweld heat treatment is mandatory under all conditions.
- (2) Postweid heat treatment is not mandatory under the following conditions:
 - (a) for circumferential butt welds in pipe or tube where the pipe or tubes comply with all of the following conditions:
 - (1) a maximum specified chromium content of 3.00%;
 - (2) a maximum nominal outside diameter of 4 in.;
 - (3) a maximum nominal thickness of 3/4 in.;
 - (4) a maximum specified carbon content of not more than 0.15% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits);
 - (5) a minimum preheat of 300°F is applied.
 - (b) for pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), (2)(a)(3), and (2)(a)(4) having nonpressure attachments fillet welded to them provided:
 - (1) the fillet welds have a maximum throat thickness of 1/2 in.;
 - (2) a minimum preheat temperature of 300°F is applied.
 - (c) for pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), (2)(a)(3), and (2)(a)(4) having studs welded to them provided a minimum preheat temperature of 300°F is applied.
- (3) When it is impractical to postweld heat P-Nos. 5A, 5B Gr. No. 1, and 5C Gr. No. 1 materials at the temperature specified in this Table, it is permissible to perform the postweld heat treatment at 1200°F minimum provided that, for material up to 2 in. nominal thickness, the holding time is increased to the greater of 4 hr minimum or 4 hr/in. of thickness; for thickness over 2 in., the specified holding times are multiplied by 4. The requirements of UCS-85 must be accommodated in this reduction in postweld heat treatment.

ضميمه ٩

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

PART UHA - HIGH ALLOY STEEL VESSELS

Table : : IA-32

TABLE UHA-32 POSTWELD HEAT TREATMENT REQUIREMENTS FOR HIGH ALLOY STEELS

	Normal Holding	Min	imum Holding Time at Normal 1 for Nominal Thickness (See UH)	Temperature A-32(d)]
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No. 6 Gr. Nos. 1, 2, 3	1250	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plus 15 min for each addi- tional inch over 2 in.

NOTES:

(1) Postweld heat treatment is not required for vessels constructed of Type 410 material for SA-182 Grade F6a, SA-240, SA-268, and SA-479 with carbon content not to exceed 0.08% and welded with electrodes that produce an austenitic chromium-nickel weld deposit or a non-air-hardening nickel-chromium-iron weld deposit, provided the plate thickness at the welded joint does not exceed $\frac{1}{2}$ in., and for thicknesses over $\frac{1}{2}$ in. to $\frac{1}{2}$ in. provided a preheat of 450°F is maintained during welding and that the joints are completely radiographed.

(2) Postweld heat treatment shall be performed as prescribed in UW-40 and UCS-56(e).

	Normal Holding	Minimum Holding Time at Normal Temperature for Nominal Thickness (See UHA-32(d))		
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No. 7 Gr. Nos. 1, 2	1350	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plus 15 min for each addi- tional inch over 2 in.

NOTES:

- (1) Postweld heat treatment is not required for vessels constructed of Type 405 or Type 410S materials for SA-240 and SA-268 with carbon content not to exceed 0.08%, welded with electrodes that produce an austenitic-chromium-nickel weld deposit or a non-air-hardening nickel-chromium-iron weld deposit, provided the plate thickness at the welded joint does not exceed ½ in. and for thicknesses over ½ in. to 1½ in. provided a preheat of 450°F is maintained during welding and that the joints are completely radiographed.
- (2) Postweld heat treatment shall be performed as prescribed in UW-40 and UCS-56(e) except that the cooling rate shall be a maximum of 100°F/hr in the range above 1200°F after which the cooling rate shall be sufficiently rapid to prevent embrittlement.
- (3) Postweld heat treatment is not required for vessels constructed of Grade TP XM-8 material for SA-268 and SA-479 or of Grade TP 18Cr-2Mo for SA-240 and SA-268.

	Normal Holding	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]			
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.	

C. N. .

Gr. Nos. 1, 2, 3, 4

NOTE:

(1) Postweld heat treatment is neither required nor prohibited for joints between austenitic stainless steels of the P-No. 8 group. See nonmandatory Appendix HA, UHA-100 to UHA-108, inclusive.

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

Table UHA-32

1998 SECTION VIII - DIVISION 1

TABLE UHA-32 (CONT'D)
POSTWELD HEAT TREATMENT REQUIREMENTS FOR HIGH ALLOY STEELS

	Normal Holding Temperature,	Minimum Holding Time at Normal Temperature for Nominal Thickness (See UHA-32(d))		
Material	· °F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No 10E Gr. No. 1	1250	1 hr/in., 15 min minimum	1 hr/in.	1 te/in.

NOTES:

(1) For SA-268 Grade TP446 material only, postweld heat treatment shall be performed as prescribed in UW-40 and UCS-56(d) except that the cooling rate shall be a maximum of 100°F/hr in the range above 1200°F after which the cooling rate shall be sufficiently rapid to prevent embrittlement.

	Normal Holding Temperature, *F, Minimum	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]		
Material		Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No. 10G	•••	•••	• • •	

Gr. No. 1

NOTE:

(1) Postweld heat treatment is neither required nor prohibited.

•	Normal Holding	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]		
Material	- Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.

P-No. 10H

Gr. No. 1

NOTE:

(1) For the austenitic-ferritic wrought or cast duplex stainless steels listed below, postweld heat treatment is neither required nor prohibited, but any heat treatment applied shall be performed as listed below and followed by liquid quenching or rapid cooling by other means:

Alloy	Postweld Heat Treatment Temperature, *F
\$32550	1900–2050
\$31260 and \$31803	1870-2010
\$32900 (0.08 max. C)	1725-1750
\$31200	1900-2000
\$31500	1785-1875
\$32304	1740-1920
J93345	2050 minimum
\$32750	1800-2060
\$32950	1825-1875

Α .	
ضميمه٩	
14040	
1	
•	

كروه مهندسين بين العللي جوش ايران

شركت كاوش همايش

Table 3.4 Recommended Types of Current, Tungsten Electrodes and Shielding Gases for Welding Different Metals

The state of the s	ype of Metal	Thickness	Type of Current	Electrode*	Shielding Gas
			Alternating current	Pure or zirconium	Argon or argon-hefam
-		over 1/8 in.	DCEN	Thursted	Argon-hesium or argor
		under 1/8 in.	OCEP	Thoristed or zirconium	Argon.
Some comer allow	3		DCEN	Thoristed	Helium
Soliber, cohher and	• , , , , , , , , , , , , , , , , , , ,	under 1/8 in.	Alternating current	Pure or zerconium	Argua
Aconosium ellova		All	Alternating current	Pura or zircomom	Argos
Min 470 m. I genta .		under 1/8 in.	DCEP	Zirconium or thoristed	Argue
ويجزيه لمباسئة المباسن			DCEN	Thoristed	Argen
the control branch	ov etasis	Ali		الرجيد Thoristed	Argon or argon-hebia:
Cay han	u, a.s.a	under 1/8 in.	Alternating current	Pure or zirconium	Argon
National stant			DCEN	Thoristed	Argon or argon-hessam
(Sillings) area		under 1/8 in.	Alternating current	Pure or zirconium	Argon
itacium			DCEN	Thoristed	Argon

[.] Where thoristed electrodes are recommended, ceristed or lanthanated electrodes may also be used.

ضمیمه ۱۰

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

MIGLMAG

GAS METAL ARC WELDING

Typical Conditions for Gas Metal Arc Welding of Carbon and Low Alloy Steel in the Flat Position

Mat Thick	orial Chess_	4	W - IV	ire mater	Cus C Vedt	rest		e Food	~~~		_
is.	10.00	Type of Wold	i.		C Margas	veits	IPM	mm/s	Shisting Gas ²	CFH	Flow
.062	1.6	Butt ³	.035	0.9	95	18	150	64	Ar 75%, CO2 -25%	25	12
.125	3.2	Bunt ³	.035	0.9	140	20	250	108	A 75%, CO2 25%	25	12
.187	4.7	Butt ³	.036	0.9	150	20	265	112	Ar 75%, CO2 25%	25	
.250	6.4	Butt ³	.035	0.9	150	21	285	112	Ar 75%, CO ₂ 25%	25 25	12
.250	8.4	Butt ⁴	.045	3.1	290	22	250	108	Ar 75%, CO2 -25%		12
-									~ 70 A, CUZ -20 76	25	12

- 1. Direct current electrode positive.
- 2. Walding grade CO2 may also be used.
- 3. Root opuning of .03 in. (0.8 mm).
- 4. Root opening of .082 is. (1.8 mm).

Table 4.9
Typical Conditions for Gas Metal Arc Welding of Aluminum in the Flat Position

Material Thickness				ire leter		rent age*	_	e Feed peed	Shielding	Gas	Flow
in.	Min	Type of Weld	ia.	6000	amps	volts	IPM	mm/s	Ges	CFH	LPM
.062	1.6	Butt	.030	0.8	90	18	365	155	Argon	30	14
.125	3.2	Butt	.030	8.0	125	20	440	186	Argon	30	14
.187	4.8	Butt	.045	1.1	160	23	275	116	Argon	35	16
.250	6.4	Butt	.045	1.1	205	24	335	142	Argon	35	16
.375	9.5	Butt	.063	1.8	240	28	215	91	Arper	40	19

Direct current electrode positive.

Table 4.10

Typical Conditions for Gas Metal Arc Welding of Austenitic Stainless Steel Using a Spray Arc in the Flat Position

Material Thickness				ire neter		rrent taga ¹		Feed		Gae	Flow
in.		Type of Weld	ia.	ANAD.	amps	volts	IPM	MM/8	Shielding Bas	CFH	LPM
.125	3.2	Butt Joint with Backing	.062	1.8	225	24	130 .	55	Ar 98%, 0 ₂ 2%	30	14
.250(1)	6.4	V-Butt Joint 60s Inc. Angle	.062	1.6	275	ै <u>ं इं</u> इंक	175	74	Ar 98%, 0 ₂ 2%	35	18
.375(1)	9.5	V-Butt Joint 80ø Inc. Angle	·.062	1.6	300	28	240	102	Ar 98%, 3g 2%	35	16

- 1. Direct current electrode positive.
- 2. Two passes required.

ضمیمه ۱۰

اموزشی گروه مهندسین بین الطلی جوش ایران/ ۱۲۷۹ مهندس لیما هترمندیان

كروه مهندسين بين العللي جوش ايران

شرکت کاوش همایش

GAS METAL ARC WELDING

Table 4.11

Typical Conditions for Gas Metal Arc Welding of Austonitic Stainless Steel Using a Short Circuiting Arc

Meterial Thickness				ire notor		rent age*		re Feed peed		Ges	Flow
ia.	(HES)	Type of Wold	ia.	西和	amps	veits	IPM	mm/s	Shielding Gas	CFH	LPM
.062	1.6	Butt Joint	.030	8.0	85	21	185	78	He 90%, Ar 7.5% CO ₂ 2.5%	30	14
.093	2.4	Butt Joint	.030	0.8	105	23	230	97	He 90%, Ar 7.5% CO ₂ 2.5%	30	14
.125	3.2	Butt Joint	.030	0.8	125	24	280	118	He 90%, Ar 7.5% CO2 2.5%	30	14

Direct current electrode positive.

Table 4.12
Typical Conditions for Gas Metal Arc Weiding of Copper Alloys in the Flat Position

	Material hickness		W Dian	ire neter	Car Voit	r ent ag s *		e Feed peed	Shielding	Gas	Flow
ia.	mm_	Type of Weld	ia.	MA	Amas	volts	IPM	mm/s	Gas	CFH	LPM
.125	3.2	Butt	.035		175	23	430	182	Argon	25	12
.187	4.8	Butt	.045		210	25	240	101	Argon	30	14
.250	8.4	Butt, Spaced	.062		385	28	240	101	Argon	35	16

^{*} Direct current electrode positive.

Table 4.13
Typical Variable Settings for Gas Metal Arc Welding of Magnesium

	terial kness		Wire 0)iameter	Correct	Voltage*	Wire E	ed Speed		- Fl '
ia.	9.0	Type of Weld	ia.	m.m	amps	veits	IPM			a Flow
.062	1.8	Square Groove or Fillet	.082	1.6	70	18	160	68	CFH 50	LPM 24
.090	2.3	Square Groove or Fillet	.082	1.8	105	17	245	104	50	24
.125	3.2	Square Groove or Fillet	.062	1.6	125	18	290	123	50	24
.250	8.4	Square Grocys or Fillet	.062	1.6	285	25	800	254	60	. 28
.375	9.5	Square Groove or FEat	.094	2.4	335	28	370	157	80	28

^{*} Direct current electrode positive.

شركت كاوش همايش

كروه مهندسين بين العللي جوش ايران

PROCEDURE QUALIFICATIONS

QW-253

A93

QW-253 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Shielded Metal-Arc (SMAW) - do wood

Paragraph	1	Brief of Variables	Essential	Essential &	Nonessenti
	.1	φ Groove design		عالج ألبو مدتت	X
عنرف QW-402	F.4.	- Backing		نهري داريم عاماً مكر	X
Jointa	.10	o Root spacing (opening)		در رر صفرت	X
	.11	له براس نیت کامیک Retainers)		x
	.5	φ Group Number		x	
	.6	7 Limits impact		x	
QW-403	.7_	T/t Limits > 8 in.	x		
Base	.8	ø T Qualified	X		
Metals	.9	$t \text{ Pass} > \frac{1}{2} \text{ in.}$	x		
	.11	φ P-No. qualified	x		
	.13	φ P-No. 5/9/10	×		
	.4	φ F-Number	X		
	.5	φ A-Number	×		-
QW-404	.6	φ Diameter			X
Filler Metals	.7	ϕ Diam. > $\frac{1}{4}$ in.		X	
	.12	φ AWS class.		x	
	.30	ø t	X		
	.33	φ AWS class.			X
	.1	+ Position			X
QW-405 Positions	.2	φ Position		x	
r vardona	.3	ø ↑↓ Vertical welding			- x
	.1	Decrease > 100°F	x		
QW-406 Preheat	.2	φ Preheat maint.		<u> </u>	X
ricicat	.3	Increase > 100°F (IP)		x	
_	.1	ø PWHT	X		
QW-407 PWHT	.2	ø PWHT (T&Trange)		×	
	.4	T Limits	X		
0W-409	.1	> Heat input		X	
Electrical	.4	φ Current or polarity		X	X
Characteristics	.8	ø [& E range			X
	.1	φ String/weave			Х
	.5	φ Method cleaning			X
QW-410 Fechnique	.6	φ Method back gouge			X
i cominque	.25	φ Manual or automatic			X
i	.26	± Peening			X

Legend:

+ Addition

> Increase/greater than

T Uphill

← Forehand

- Deletion

< Decrease/less than

1 Downhill

→ Backhand

ضمیمه ۱۱

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-253.1

QW-253.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Shielded Metal-Arc (SMAW)

	$\neg \neg$	Special Process E	ssential Variables
Paragraph		Hardfacing Overlay (QW-216)	Corrosion-Resistant Overlay (QW-214)
QW-402	.16	< Finished t	< Finished t
Joints	.20	φ P-Number	
QW-403 Base	.23	ø T Qualified	
Metals OW-404	.12	φ AWS class.	& A-Number
Filler Metals	.37	φ Dia. (1st layer)	φ Dia. (1st layer)
QW-405	.38	φ Dia. (1st layer) + Position	+ Position
Positions OW-406	.4	Dec. > 100°F preheat	Dec. > 100°F preheat > Interpass
Preheat QW-407	├	> Interpass	ø PWHT
PWHT	.6	a an an an anity	♦ Current or polarity
QW-409 Electrical	.22	Inc. > 10% 1st layer	Inc. > 10% 1st layer
Characteristics QW-410 Technique	.38	φ Multi- to single-layer	ø Multi- to single-layer

Legend:

Deletion

> Increase/greater than + Addition < Decrease/less than

† Uphill 1 Downhill ← Forehand → Backhand → Change

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

PROCEDURE QUALIFICATIONS

QW-254

QW-254 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	ø	Groove design	•		Х
QW-402	4	-	Backing			λ
Joints	.10	6	Root spacing			x
	.11	=	Retainers			×
	.5	ø	Group Number		×	
	.6		T Limits		x	
QW-403	.7		T/t Limits > 8 in.	x		
Base	.8	ø	T Qualified	х		
Metals	.9		t Pass > ½ in.	X		
	.11	4	P-No. qualified	X		
	.13	ø	P-No. 5/9/10	X		
	.4	ø	F-Number	X		
	.5	6	A-Number	X		
	.6	0	Diameter			x
	.9	ø	Flux/wire class.	X		
	.10	ف	Alley flux	X		
QW-404 Filler Metals	.24	= #	Suopiemental	x		
	.27	6	Alloy elements	X		
	.29	6	Flux designation			X
	.30	ø	:	X		
	.33	ø	AWS class.			X
	.34	ø	Flux type	х		
	.35	ø	Flux/wire class.		×	X
	36		Recrushed slag	x		
QW-405 Positions	.1	+	Position			X
	.1		Decrease > 100°F	X		
QW-406 Preheat	.2	ø	Preheat maint.			Х
	.3		Increase > 100°F (IP)		x	
	.1	ø	PWHT	x		
QW-407 PWHT	.2	ø	PWHT (T & T range)		×	
	.4		T Limits	λ		
QW-409	.1	>	Heat input		×	
Electrical	.4	4	Current or polarity		X	x
Characteristics	.8	4	1 & E range			X

ضمیمه ۱۱

آشنایی با تست و دستورالعمل جوشكاري

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-254

1998 SECTION IX

QW-254 (CONT'D) WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ø	String/weave			X
	.5	ø	Method cleaning			X
	.6	ø	Method back gouge			X
	.7	ø	Oscillation			X
QW-410	.8	8	Tube-work distance			X
Technique	.9	ø	Muiti to single pass/side		×	Y
	.10	ø	Single to multi electrodes		×	x
	.15	ø	Electrode spacing			X
	.25	ø	Manual or automatic			X
	.26	±	Peening			X

Legend:

+ Addition > Increase/greater than

1 Uphill

← Forehand

∂ Change

- Deletion

< Decrease/less than

↓ Downhill

→ Backhand

آشنایی با تست و دستورالعمل جوشكاري

PROCEDURE QUALIFICATIONS

QW-254.1

QW-254.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

		Special Process (Essential Variables
Paragraph		Hardfacing Overlay (QW-216)	Corrosion-Resistant Overlay (QW-214)
QW-402 Joints	.16	< Finished t	< Finished t
QW-403 Base	.20	φ P-Number	∳ P-Number
Metals (.23	φ T Qualified	→ T Qualified
	.12	φ AWS class.	
W-404	.24	± Supplemental	± Supplemental
iller	.27	φ Alloy elements	
letals	.37		d A-Number
	.39	ø Nom. flux comp.	ø Nom. flux comp.
W-405 Positions	.4	+ Position	+ Position
W-406 -	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass
W-407 WHT	.6	ø PWHT	ø PWHT
)W-409	.4	ø Current or polarity	
Electrical Characteristics	.26	> Heat input more than 10%	> Heat input more than 10%
	.38	φ Multi- to single-layer	
W-410	.40		- Sup. device
echnique	.5C	ø Na. of elec.	♦ No. of elec.
	.51	± Oscillation	± Oscillation

Legend:
+ Addition > Increase/greater than
- Deletion < Decrease/less than

↑ Uphill ↓ Downhill ← Forehand

→ Backhand

ضميمه ١١

اشنایی با تست و دستورالعمل جوشکاری

كروه مهندسين بين العللي جوش ايران

شركت كاوش همايش

QW-255

1998 SECTION IX

QW-255 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Metal-Arc Welding (GMAW and FCAW)

Paragraph		Brief of Variables		Essential	Supplementary Essential	Nonessential
	.1	ø	Groove design			х
QW-402	.4	-	Backing			X
Joints	.10	ø	Root spacing			У
	.11	Ξ	Retainers			X
	.5	ø	Group Number		×	
	.6		T Limits		×	
	.7		Tit Limits > 8 in.	X		
QW-403 Base	.8_	ø	T Qualified	X		
Metals	.9		t Pass > $\frac{1}{2}$ in.	x		
	.10		T Limits (S. Cir. Arc)	X		
	.11	ø	P-No. qualified	×		
	.13	ø	P-No. 5/9/10	X		
	.4	ø	F-Number	x		
	.5	ø	A-Number	х		
	.6	ø	Diameter			X
	.12	4	AWS class.		X.	
QW-404 Filler	.23	8	Filler metal product form	X	`	
Metals	.24	= 6	Supplemental	x		
	.27	ø	Alloy elements	х		
	.30	φ	t	х		-
	.32		t Limit (S. Cir. Arc)	х		
	.33	ø	AWS Class			X
	.1	+	Position			x
Q W-405 Positions	.2	s	Position		x	
	.3	φ	T‡ Vertical welding		•	X
_	.1		Decrease > 100°F	X		
QW-406 Preheat	.2	φ	Preheat maint.			x
· · circut	.3	-	Increase > 100°F (IP)		x	
	1.1	φ	PWHT	X		
QW-407	.2	ø	PWHT (T & T range)		х	
PWHT	4		7 Limits	x	İ	

آشنایی با تست و دستو *ر*العمل جوشکاری

كروه مهندسين بين العللي جوش ابران

شركت كاوش همايش

PROCEDURE QUALIFICATIONS

QW-255

A99

MIC MAC

QW-255 (CONT'D)
WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS)
Gas Metal-Arc Welding (GMAW and FCAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	=	Trail or & comp.			X
QW-408	.2	0	Single, mixture, or %	x		
	.3		Flow rate			×
Gas	.5	=	or ø Backing flow			X
	.9	_	Backing or ϕ comp.	X		
	.10	ø	Shielding or trailing	X		
•	.1	>	Heat input		x	
QW-409 Electrical	.2	ø	Transfer mode	х		
Characteristics	.4	•	Current or polarity		x	X
	.8	ø	I & E range			×
	.1	ø	String/weave			X -
	.3	ø	Orifice, cup, or nozzle size			×
	.5	0	Method cleaning			×
	.6	0	Method back gouge			×
O111 43 A	7	ø	Oscillation		-	×
QW-410 Technique	.8	6	Tube-work distance			X
•	.9	ø	Multi to single pass/side		x	×
	.10	ø	Single to multi electrodes		×	×
	.15	ø	Electrode spacing			X
	.25	ø	Manual or automatic			X
	.26	=	Peening			x

Legend:

+ Addition > Increase/greater than - Deletion < Decrease/less than

↑ Uphill ↓ Downhill

← Forehand → Backhand

ضميمه ١١

مهندس نيما هنزمنديان

كامة معتدسة إنه الملك حدث إنها: ٢٧٩/

دوره اموزنبى

ا شنایی با تست و دستورالعمل جوشکا*ر*ی

شركت كاوش همايش

كروه مهندسين بين العللي جوش ايران

QW-255.1

1998 SECTION IX

QW-255.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Metal-Arc Welding (GMAW and FCAW)

		Special Process	Essential Variables
Paragraph		Hardfacing Cverlay (QW-216)	Corrosion-Resistant Overlay (QW-214)
QW-402 Joints	.16	< Finished t	< Finished t
QW-403 Base	.20	∳ P-Number	φ P-Number
Metals	.23	φ T Qualified	φ T Qualifies
	.12	ø AWS class.	
QW-404	.23	Filler metal product form	φ Filler metal product form
Filler Metals	.24	± Supplemental	± Supplemental φ
	.27	♠ Alloy elements	
	.37		φ A-Number
QW-405 Positions	.4	+ Position	+ Position
QW-406 Preheat	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass
QW-407 PWHT	.6	ø PWHT	φ PWHT
QW-408 Gas	.15	★ Type or flow rate	φ Type or flow rate
QW-409 Electrical	.4	φ Current or polarity	ø Current or polarity
Characteristics	.26	> Heat input more than 10%	> Heat input more than 10%
334/ 43.0	.38	ø Multi- to single-layer	ø Multi- to single-layer
QW-410 Technique	.50	φ No. of eig	ø No. of elet.
	.51	± Oscillation	± Oscillation

Legend:

- 1 Uphill
- \leftarrow Forehand
- φ Change

- + Addition > Increase/greater than Deletion < Decrease/less than
 - - ↓ Downhill → Backhand

آشناًیی با تست و دستورالعمل جوشکاری

شركت كاوش همايش

PROCEDURE QUALIFICATIONS

QW-256

QW-256 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

Paragrag	oh	Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	φ Groove design			X
2'V-402	5	+ Backing			! x
Joints	.10	∂ Root spacing			x
	.11	± Retainers		 	X
	.5	ø Group Number		×	
	.6	7 Limits		×	
QW-403 Base	.7	<i>T/t</i> Limits > 8 in.	x		
Metals	.8	ø T Qualified	X		
	.11	φ P-No. qualified	X		
	.13	φ P-No. 5/9/10	X		
	.3	φ Size			X
	.4	φ F-Number	x		
	.5	φ A-Number	х		
	12	φ AWS class.		×	
QW-434 Filler	.14	= Filler	X		
Metals	.22	± Consum. insert			X
	.23	ø Filler metal product form	X		
	.30	ø t	X	·	
	.33	φ AWS class.			X
QW-405	.1	+ Position		<u></u>	X
Positions	.2	ø Position		×	
	.3	ø T↓ Vertical welding			X
QW-406	.1	Decrease > 100°F	X		
Preheat	.3	increase > 100°F (IP)		x	
014 407	.1	ø PWHT	x		
QW-407 PWHT	.2	ø PWHT(T&Trange)		x	
	.4	T Limits	X		
	.1				х
	.2	φ Single, mixture, or %	X		
ec⊷wp	.3	ø Flow rate			X
Gas	.5	≃ or ø Backing flow			Х
	.9	- Backing or ø comp.	X		
	.10		x		

ضمیمه ۱۱

«مهتدس نیما هنرمندیان»

ئروه مهندسين بين الطلق جوش ايران *ا* ۲۷۹

دور ۾ انوز ٿي

اشنایی با تست و دستورالعمل جوشكاري

حروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-256

1998 SECTION IX

QW-256 (CONT'D) WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	>	= Pulsing [×	
OW-409	3	<u> =</u>	Pulsing [1		x
Electrical Characteristics	.4	6	Current or polarity		×	х
Characteristics	.8	ø	l & E range			х
	.12	ø	Tungsten electrode			х
	.1	ø	String/weave			X
	.3	6	Orifice, cup, or nozzle size			X
	.5	0	Method cleaning			X
	.6	ø	Method back gouge			X
QW-410	.7	ø	Oscillation			X
Technique	.9	ø	Multi to single pass/ side		x	X
	.10	ø	Single to multi electrodes		x	X
	.11	ø	Closed to out chamber	x		
	.15	ø	Electrode spacing			x
	.25	ø	Manual or automatic			X
	.26	±	Peening			X

Legend:

1 Upnill

 \leftarrow Forehand

ø Change

+ Addition > Increase/greater than - Deletion < Decrease/less than

1 Downhill

آشنایی با تست و دستورالعمل جوشكاري

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

PROCEDURE QUALIFICATIONS

QW-256.1

QW-256.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

		Special Process	Essential Va	riables	
Faragraph		Hardfacing Overlay (QW-216)	*	Corrosion-Resistant Overlay (QW-214)	
QV/-402 Joints	.16	< Finished t	<	Finished t	
QW-403 5ase	.20	φ P-Number	•	P-Number	
Metals	.23	φ Γ Qualified		T Qualified	
	.12	φ AWS class.			
QW-404	.14	± Filler	=	Filler	
Filler Metals	.23	φ Filler metal product form	•	Filler metal product form	
	.37		ø	A-Number	
QW-405 Positions	.4	+ Position	+	Position	
QW-406 Preheat	.4	Dec. > 100°F preheat > Interpass		Dec. > 100°F preheat > Interpass	
QW-407 PWHT	.6	ø PWHT	ø	PWHT	
QW-408 Gas	.15	φ Type or flow rate	6	Type or flow rate	
QW-409 Electrical	.4	d Current or polarity	ø	Current or polarity	
Characteristics	.26	> Heat input more than 10%	>	Heat input more than 10%	
]W-410	.38	φ Multi- to single-layer	ø	Multi- to single-layer	
Technique	.50	δ No. of elec.	ø	No. of elec	
	.51	= Oscillation	=	Osculation	

Legend: + Addition > Increase/greater than - Deletion < Decrease/less than

1 Uphill 1 Downhill

← Forehand → Backhand ♠ Change

ضمیمه ۱۱

مهندس ليما هنرمنديان

گروه مهندسین بین الملا*ی جوش ایران! ۱۳۲۸*

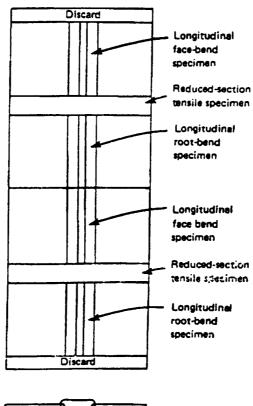
اشنایی با تست و دستورالعمل جوشكاري

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-463

WELDING DATA


QW-463.1(c)

QW-463 Order of Removal

الله ودر الموسود	QW-4
. Discard	this piece
Reduced section	tensile specimen
Root bend	specimen
Face bend	specimen
Root bend	specimen
Face bend	specimen
Reduced section	tensile specimen
Discard	this piece

Discard	this plece
Side bend	specimen
Reduced section	tensile specimen
Side bend	specimen
Side band	specimen
Reduced section	tensile specimen
Side bend	specimen
Discard	this piece

QW-463.1(a) PLATES — LESS THAN $\frac{3}{4}$ in. THICKNESS PROCEDURE QUALIFICATION QW-463.1(b) PLATES $-\ ^3\!\!4$ in. AND OVER THICKNESS AND ALTERNATE FROM $^3\!\!8$ in. BUT LESS THAN 34 in. THICKNESS PROCEDURE QUALIFICATION

QW-463.1(c) PLATES - LONGITUDINAL PROCEDURE QUALIFICATION

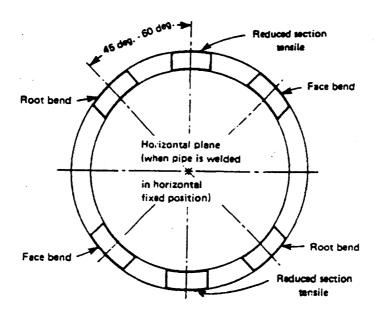
ضمیمه ۱۲

مهندس ليما مترمنديان

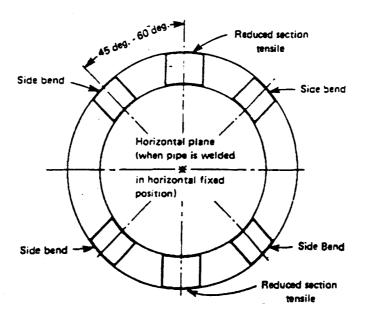
🥏 💎 دوره اموزشی 🥏 کروه مهندسین بین البالی جوش ایران/ ۱۳۷۹

(...

آشنایی با تست و دستورالعمل جوشکاری


كروه مهندسين بين العللي جوش ايران

شركت كاوش همايش


QW-463.1(d)

1998 SECTION IX

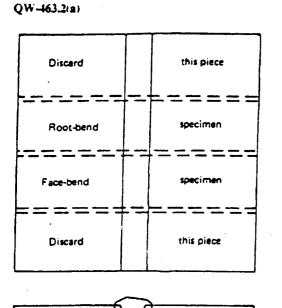
QW-463.1(e)

QW-463.1(d) PROCEDURE QUALIFICATION

QW-463.1(e) PROCEDURE QUALIFICATION

70

4.


دستور العمل جوشكاري

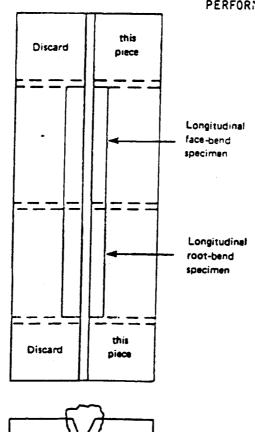
1998 SECTION IX

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-463.2(c)

Discard this piece


Side-bend specimen

Side-bend specimen

Discard this piece

QW-463.2(a) PLATES — LESS THAN 3/4 in.
THICKNESS PERFORMANCE QUALIFICATION

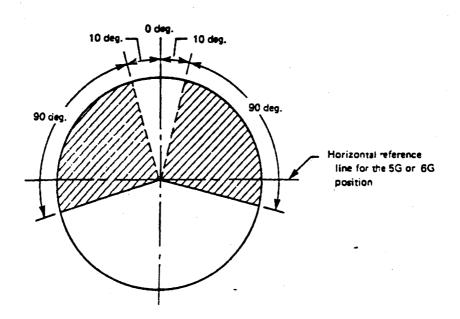
QW-463.2(b) PLATES — 3/4 in. AND OVER THICKNESS AND ALTERNATE FROM 3/3 in. BUT LESS THAN 3/2 in THICKNESS PERFORMANCE QUALIFICATION

QW-463.2(c) PLATES - LONGITUDINAL PERFORMANCE QUALIFICATION

									11	سميمه	Ó
8886		2000000000		*********	000000000	200001100000	00000000	00000000000			
	رمندیان"	إنها هـ	مهندس					NT)	يران/ ٦	ملل جوش ا	JI.

كروه مهندسين بين المللي جوش ايران

آشنایی با تست و دستورالعمل جوشکاری

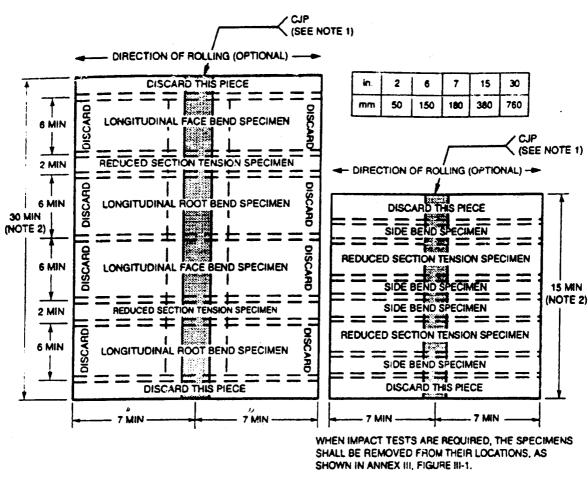


شرکت کاوش همایش

·

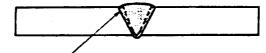
WELDING DATA

QW-463.1(f)


QW-463.1(f) NOTCH-TOUGHNESS TEST SPECIMEN LOCATION

كروه مهندسين بين المللي جوش ايران

نىركت كاوش همايش


STD.AWS DI.1-ENGL 1998 TO 0784265 DSD8566 413

120/Qualification

(1) LONGITUDINAL BEND SPECIMENS

(2) TRANSVERSE BEND SPECIMENS

NOTES:

- 1. THE GROOVE CONFIGURATION SHOWN IS FOR ILLUSTRATION ONLY. THE GROOVE SHAPE TESTED SHALL CONFORM TO THE PRODUCTION GROOVE SHAPE THAT IS BEING QUALIFIED.
- 2. LONGER TEST PLATES MAY BE REQUIRED WHEN IMPACT TESTING ON CONTRACT DOCUMENTS OR IN SPECIFICATIONS. IMPACT SPECIMENS SHOULD BE REMOVED AT MID-LENGTH OF THE TEST WELD.

Figure 4.10—Location of Test Specimens on Welded Test Plate Over 3/8 in. (9.5 mm) Thick—WPS Qualification (see 4.8)

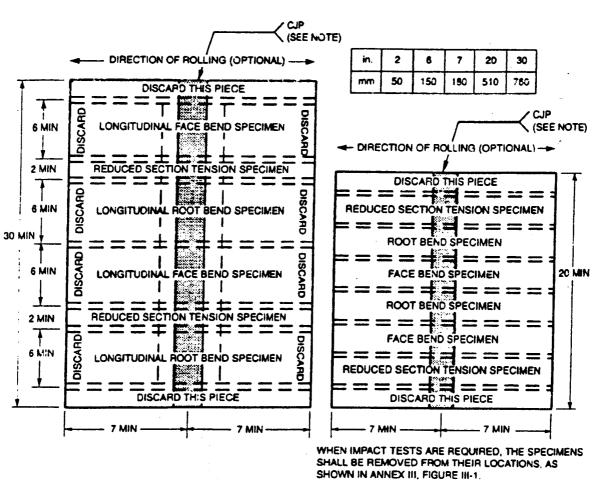
ضمیمه ۱۲

" مهندس لينا هنرمنديان"

گروه مهندسین بین المللی جوش آبران/ ۱۳۷۹

وروابرزش

آشنایی با تست و دستو *ر*العمل جوشکا*ر*ی



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 ## 0784265 0508567 35T ##

Qualification/121

(1) LONGITUDINAL BEND SPECIMENS

(2) TRANSVERSE BEND SPECIMENS

NOTE THE GROOVE CONFIGURATION SHOWN IS FOR ILLUSTRATION ONLY. THE GROOVE SHAPE TESTED SHALL CONFORM TO THE PRODUCTION GROOVE SHAPE THAT IS BEING QUALIFIED.

Figure 4.11—Location of Test Specimens on Welded Test Plate 3/8 in. (9.5 mm) Thick and Under—WPS Qualification (see 4.8)

اشنایی با تست و دستو *ر*العمل جوشکاری

كروه مهندسين بين المللي جوش ابران

شرکت کاوش همایش

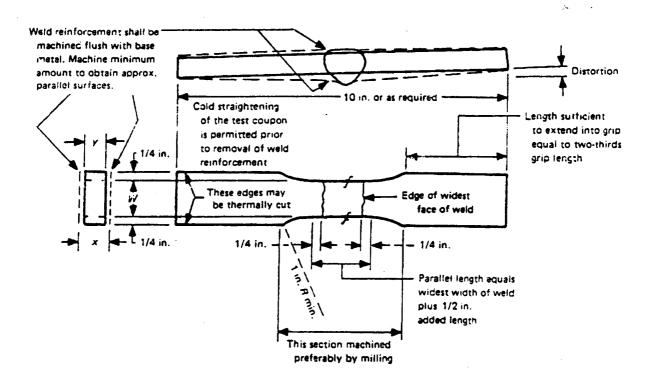
QW-462

1998 SECTION IX

OW-462.1(a)

QW-462 Test Specimens

The purpose of the QW-462 figures is to give the manufacturer or contractor guidance in dimensioning test specimens for tests required for procedure and performance qualifications. Unless a minimum, maximum, or tolerance is given in the figures (or as QW-150, QW-160, or QW-180 requires), the dimensions


are to be considered approximate. All welding processes and filler material to be qualified must be included in the test specimen.

x = coupon thickness including reinforcement

y = specimen thickness

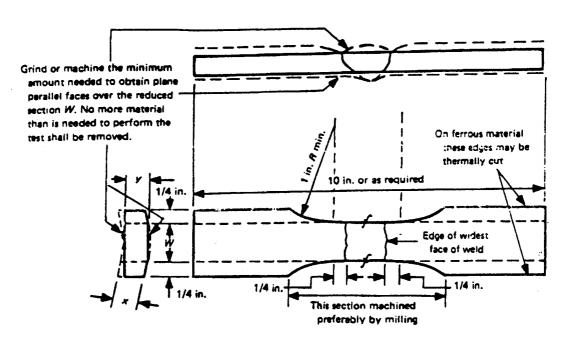
T =coupon thickness excluding reinforcement

 $W = \text{specimen width}, \frac{3}{4} \text{ in.}$

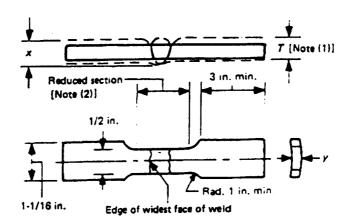
QW-462.1(a) TENSION - REDUCED SECTION - PLATE

ضمیمه ۱۳

آشنایی با تست و دستورالعمل جوشکاری


شركت كاوش همايش

كروه مهندسين بين المللي جوش ايران


QW-462.1(b)

WELDING DATA

QW-462.1(c)

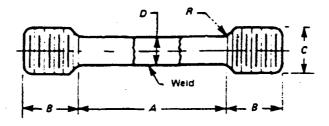
QW-462.1(b) TENSION - REDUCED SECTION - PIPE

NOTES:

- (1) The weld reinforcement shall be ground or machined so that the weld thickness does not exceed the base metal thickness.

 T. Machine minimum amount to obtain approximately parallel surfaces.
- (2) The reduced section shall not be less than the width of the weld plus 2y.

QW-462.1(c) TENSION — REDUCED SECTION ALTERNATE FOR PIPE


كروه مهندسين بين المللي جوش ايران

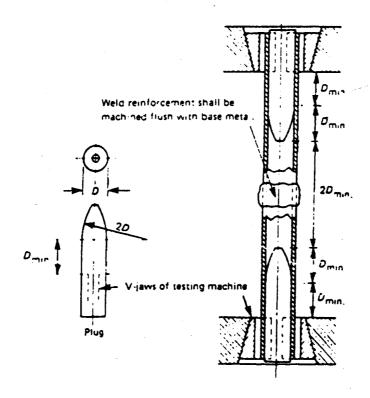
شرکت کاوش همایش

QW-462.1(d)

1998 SECTION IX

QW-462.1(e)

	Standard Dimensions In.						
	(a) 0.505 Specimen	(b) 0.353 Specimen	(c) 0.252 Specimen	(d) 0.188 specimen			
A — Length of reduced section 9 — Diameter R — Radius of fillet 8 — Length of end section C — Diameter of end section	{Note (1) 0.500 =0.010 3-8, min. 1-3-8, approx. 3-4	: Note (1): 0.350 ±0.007 1 · 4, min. 1-1 / 8, approx. 1 / 2	Note (1)] 0 250 ±0.005 3 16, min. 7/8, approx. 3/8	[Note (1)] 0 188 ±0.003 1, 8, min. 1/2, approx.			


GENERAL NOTES:

- (a). Use maximum diameter specimen (a), (b), (c), or (d) that can be cut from the section.
- (b) Weld should be in center of reduced section.
- (c) Where only a single coupon is required the center of the specimen should be midway between the surfaces.
- (d) The ends may be of any shape to fit the holders of the testing machine in such a way that the load is applied axially

NOT:

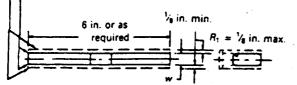
(1) Reduced section A should not be less than width of weld plus 2D

QW-462.1(d) TENSION - REDUCED SECTION - TURNED SPECIMENS

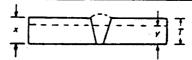
QW-462.1(e) TENSION - FULL SECTION - SMALL DIAMETER PIPE

ضمیمه ۱۳

آشنایی با تست و دستورالعمل جوشکاری


كروه مهندسين بين المللي جوش ايران

شركت كاوش همايش


WELDING DATA

QW 462.2

- (1a) For procedure qualification of materials other than P-No. 1 in QW-422, if the surfaces of the side bend test specimens are gas cut, removal by machining or grinding of not less than 1/2 in, from the surface shall be required.
- (ib) Such removal is not required for P-No. 1 materials, but any resulting roughness shall be dressed by machining or grinding.
- -(2) For performance qualification of all materials in QW-422, if the surfaces of side bend tests are gas cut, any resulting roughness shall be dressed by machining or grinding.

T, in,		w, in.		
7, in.	y, in.	P-No. 23,	All other	
3/4 to 11/2, incl.	τ	F-No. 23, or P-No. 35	metals	
		- 1/6	3/6	
>11/2	[Note (1)]	ν,	3/8	

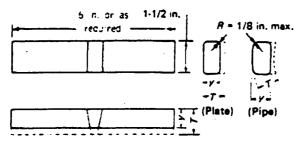
GENERAL NOTE: Weld reinforcement and backing strip or backing ring, if any, may be removed flush with the surface of the specimen. Thermal cutting, machining, or grinding may be employed. Cold straightening is permitted prior to removal of the reinforcement.

NOTE:

- (1) When specimen thickness Texceeds 1 $\frac{1}{2}$ in., use one of the following.
- (a) Cut specimen into multiple test specimens y of approximately equal dimensions $(\frac{3}{4}$ in, to $1\frac{1}{2}$ in.).
 - y = tested specimen thickness when multiple specimens are taken from one coupon
- (b) The specimen may be bent at full width. See requirements on jig width in QW-466.1.

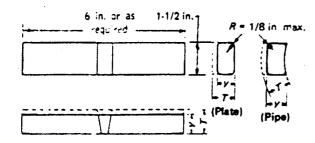
QW-462.2 SIDE BEND

R.


كروه مهندسين بين المللي جوش ايران

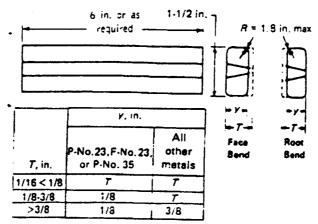
شركت كاوش همايش

QW-462-3(a)


1998 SECTION IX

QW-462.3(b)

Face-bend specimen - Plate and Pipe


Root-bend specimens - Plate and pipe

NOTES:

- (1) Weld reinforcement and backing strip or backing ring, if any, shall be removed flush with the surface of the specimen. If a recessed ring is used, this surface of the specimen may be machined to a depth not exceeding the depth of the recess to remove the ring, except that in such cases the thickness of the finished specimen shall be that specified above. Do not flame-out nonferrous material.
- (2) If the pipe being tested is 4 in, nominal diameter or less, the width of the bend specimen may be 3/4 in, for pipe diameters 2 in, to and including 4 in. The bend specimen width may be 3/8 in, for pipe diameters less than 2 in, down to and including 3/8 in, and as an alternative, if the pipe being tested is equal to or less than 1 in, nominal pipe size (1.315 in, O. D.), the width of the bend specimens may be that obtained by cutting the pipe into quarter sections, less an allowance for saw cuts or machine cutting. These specimens cut into quarter sections are not required to have one surface machined flat as shown in QV/462.3(e). Send specimena taken from tubing of comparable sizes may be handled in a similar manner.

QW-462.3(a) FACE AND ROOT BENDS — TRANSVERSE^{1,2}

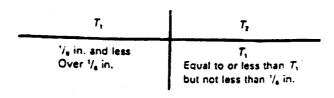
NOTE

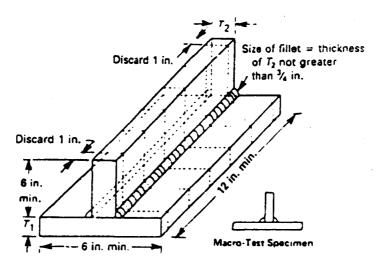
(1) Weld reinforcements and backing strip or backing ring, if any, shall be removed essentially flush with the undisturbed surface of the base material. If a recessed strip is used, this surface of the specimen may be if achined to a depth not exceeding the depth of the recess to remove the strip, except that in such cases the thickness of the finished specimen shall be that specified above.

QW-462.3(b) FACE AND ROOT BENDS - LONGITUDINAL¹

ضمیمه ۱۳

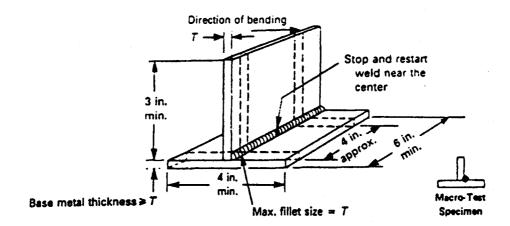
آشنایی با تست و دستورالعمل جوشکاری


كروه مهندسين بين المللي جوش ابران


شركت كاوش همايش

QW-462.4(a)

WELDING DATA

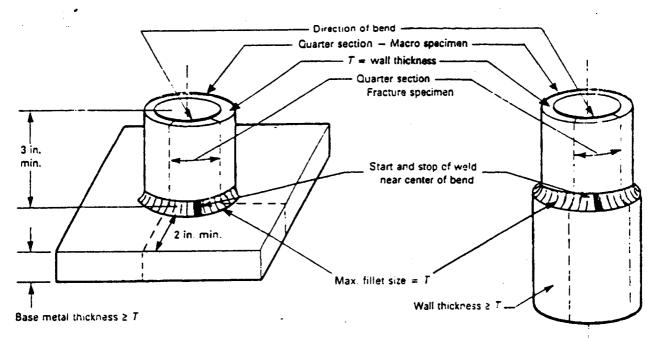

QW-462.4(b)

GENERAL NOTE: Macro test — The fillet shall show fusion at the root of the weld but not necessarily beyond the root. The weld metal and heat affected zone shall be free of cracks.

QW-462.4(a) FILLET WELDS - PROCEDURE

GENERAL NOTE: Refer to QW-452.5 for T thickness/qualification ranges.

QW-462.4(b) FILLET WELDS - PERFORMANCE


ا شنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

گروه مهندسین بین المللی جوش ایران

QW-462.4(c)

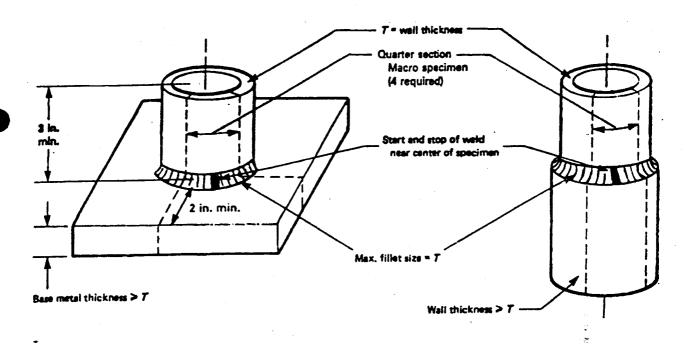
1998 SECTION IX

GENERAL NOTE: Either pipe-to-plate or pipe-to-pipe may be used as shown.

QW-462.4(c) FILLET WELDS IN PIPE - PERFORMANCE

ضمیمه ۱۳

آشنایی با تست و دستورالعمل جوشكاري



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

WELDING DATA

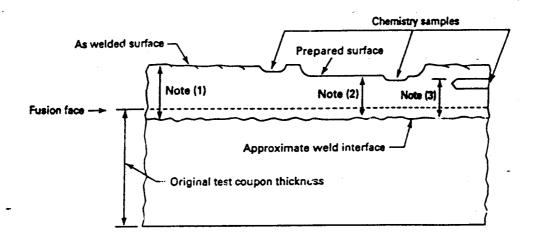
QW-462.4-(1)

GENERAL NOTES:

- (a) Either pipe-to-plate or pipe-to-pipe may be used as shown.
- (b) Macro test:
 - (1) The fillet shall show fusion at the root of the weld but not necessarily beyond the root.
 - (2) The weld metal and the heat affected zone shall be free of cracks.

QW-462.4(d) FILLET WELDS IN PIPE - PROCEDURE

، سنایی با نست و دستو *ر*العمل جو شکا*ر*ی



كروه مهندسين بين المللي جوش ايران

شركت كاوش همايش

QW-462.5(a)

1998 SECTION IX

NOTES:

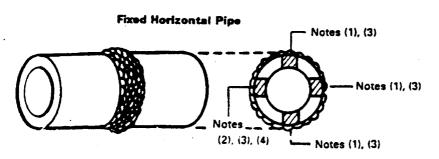
- (1) When a chemical analysis or hardness test is conducted on the as welded surface, the distance from the approximate weld interface to the final as welded surface shall become the minimum qualified overlay thickness. The chemical analysis may be performed directly on the as welded surface or on chips of material taken from the as welded surface.
- (2) When a chemical analysis or hardness test is conducted after material has been removed from the as welded surface, the distance from the approximate weld interface to the prepared surface shall become the minimum qualified overlay thickness. The chemical analysis may be made directly on the prepared surface or from chips removed from the prepared surface.
- (3) When a chemical analysis test is conducted on material removed by a horizontal drilled sample, the distance from the approximate weld interface to the uppermost side of the drilled cavity shall become the minimum qualified overlay thickness. The chemical analysis shall be performed on chips of material removed from the drilled cavity.

A00

QW-462.5(a) CHEMICAL ANALYSIS AND HARDNESS SPECIMEN CORROSION-RESISTANT AND HARDFACING WELD METAL OVERLAY

١٣	ضميمه	

آشنایی با تست و دستورالعمل جوشکاری

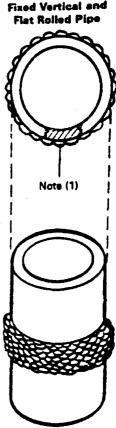


حروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

WELDING DATA

OW-462.5(b)



Test Specimen Location for 5G Overlay Qualification (Specimens Required From a Minimum of Three Locations)

Fixed Pipe on 45 deg. Angle

Test Specimen Location for 6G Overlay Qualification (Specimens Required From a Minimum of Three Locations)

Test Specimen Location for 2G and 1G Rotated Overlay Qualification (Specimens Required From One Location)

GENERAL NOTE: Overlay may be on the inside or outside of pipe.

NOTES:

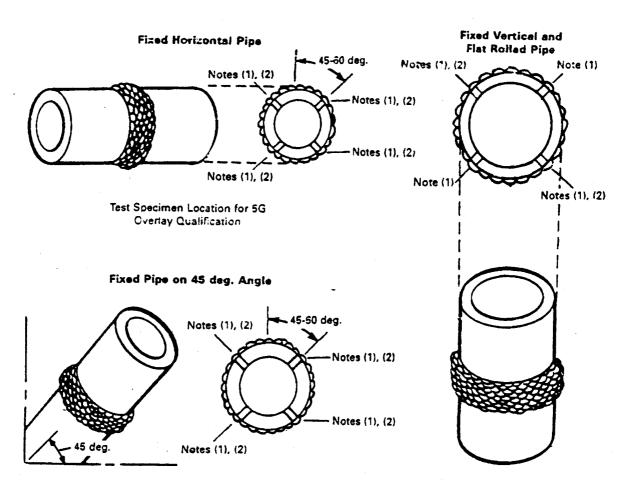
(1) Location for required test specimen removal (QW-453.).

(2) Testing of circumferential hardfacing weld metal on pipe procedure qualification coupons may be limited to a single segment (completed utilizing the vertical, up-hill progression) for the chemical analysis, hardness, and macro-etch tests required in QW-453. Removal is required for a change from vertical down to vertical up-hill progression (but not vice-versa).

(3) Location of test specimens shall be in accordance with the angular position limitations of QW-120.

(4) When overlay welding is performed using machine or automatic welding and the vertical travel direction of adjacent weld beads is reversed on alternate passes, only one chemical analysis or hardness specimen is required to represent the vertical portion. Qualification is then restricted in production to require alternate pass reversal of rotation direction method.

QW-462.5(b) CHEMICAL ANALYSIS SPECIMEN, HARDFACING OVERLAY HARDNESS, AND MACRO TEST LOCATION(S) FOR CORROSION-RESISTANT AND HARDFACING WELD METAL OVERLAY


استایی با نست و دستورالعمل جوشكاري

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

QW-462.5(c)

1998 SECTION IX

Test Specimen Location for 6G **Overlay Qualification**

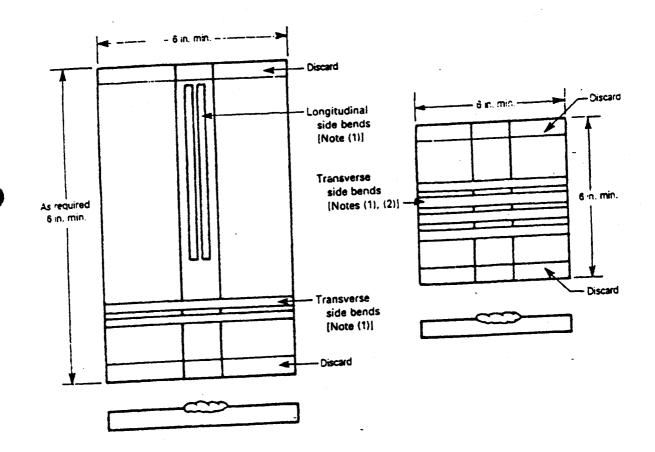
Test Specimen Location for 2G and 1G Rotated **Overlay Qualification**

GENERAL NOTE: Overlay may be on the inside or outside of pipe.

- (1) Location fol required test specimen removal Procedure (QW-453).
- (2) Location for required test specimen removal Performance (QW-453).

QW-462.5(c) PIPE BEND SPECIMEN - CORROSION-RESISTANT WELD METAL OVERLAY

ضمیمه ۱۳


آشنایی با تست و دستورالعمل جوشکا*ر*ی

شرکت کاوش همایش

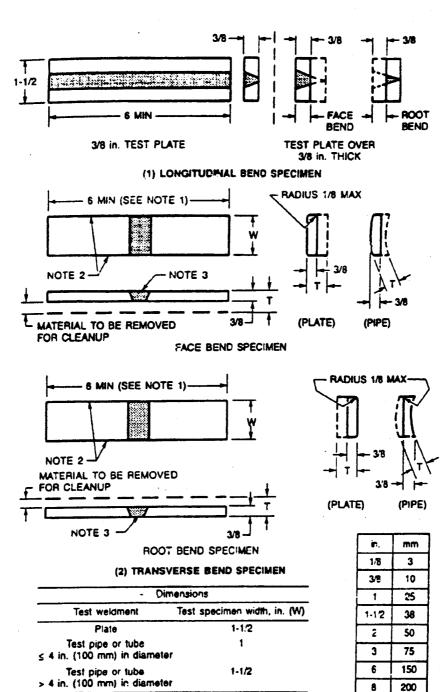
كروه مهندسين بين المللي جوش ايران

WELDING DATA

QW-46. 3(d)

- NOTES:
 (1) Location for required test specimen removal Procedure (QW-453). Four side bend test specimens are required
- (2) Location for required test specimen removal Performance (QW-453). Two side bend test specimens are required for each position.

QW-462.5(d) PLATE BEND SPECIMENS - CORROSION-RESISTANT WELD METAL OVERLAY



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

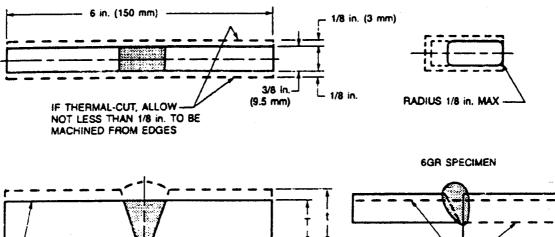
STD.AWS D1.1-ENGL 1998 EN 0784265 OSO8568 296

122/Qualification

Notes

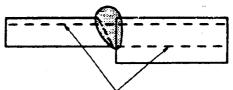
- A longer specimen length may be necessary when using a wraparound type bending fixture or when testing steel with a yield strength of 90 ksi (620 MPa) or more.
- 2. These edges may be thermal-cut and may or may not be machined.
- 3. The weld reinforcement and backing, if any, shall be removed flush with the surface of the specimen (see 5.24.4.1 and 5.24.4.2). If a recessed backing is used, this surface may be machined to a depth not exceeding the depth of the recess to remove the backing; in such a case, the thickness of the finished specimen shall be that specified above. Cut surfaces shall be smooth and paraflet.
- 4. T = plate or pipe thickness.
- When the thickness of the test plate is less than 3/8 in. (9.5 mm), use the nominal thickness for face and root bends.

Figure 4.12—Face and Root Bend Specimens (see 4.8.3.1)


آشنایی با تست و دستورالعمل جوشكاري

شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران


STD.AWS D1.1-ENGL 1998 🐯 0784265 D508569 122 🛤

Qualification/123

WHEN I EXCEEDS 1-1/2 in. (38.1 mm), CUT ALONG THIS LINE. EDGE MAY BE THERMAL CUT.

t, in.	T, in.
3/8 to 1-1/2	t
> 1-1/2	See Note 2

MACHINE THE MINIMUM AMOUNT NEEDED TO OBTAIN PLANE PARALLEL FACES (OPTIONAL)

t, mm	T, mm
9.5 to 38.1	t
> 38.1	See Note 2

Notes

- 1. A longer specimen length may be necessary when using a wraparound-type bending fixture or when testing steel with a yield strength of 90 ksi (620 MPa) or more.
- 2. For plates over 1-1/2 in. (38.1 mm) thick, cut the specimen into approximately equal strips with T between 3/4 in. (19.0 mm) and 1-1/2 in, and test each strip.
- t = plate or pipe thickness.

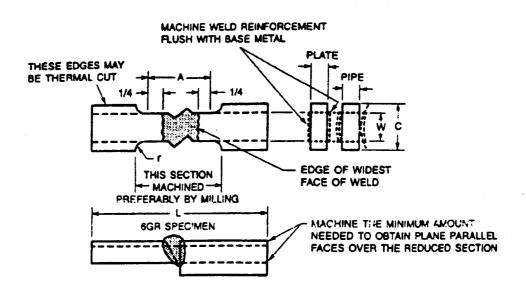
Figure 4.13—Side Bend Specimens (see 4.8.3.1)

the bent portion of the specimen after testing. When using the wraparound jig, the specimen shall be firmly clamped on one end so that there is no sliding of the specimen during the bending operation. The weld and heat-affected zones shall be completely in the bent portion of the specimen after testing. Test specimens shall be removed from the jig when the outer roll has been moved 180° from the starting point.

4.8.3.2 Longitudinal Bead Specimens. When material combinations differ markedly in mechanical bending properties, as between two base materials or between the weld metal and the base metal, longitudinal bend tests (face and root) may be used in lieu of the transverse face and root bend tests. The welded test assemblies conforming to 4.8.2 shall have test specimens prepared by cutting the test plate as shown in Figures 4.10 or 4.11, whichever

is applicable. The test specimens for the longitudinal bend test shall be prepared for testing as shown in Figure 4.12.

- 4.8.3.3 Acceptance Criteria for Bend Tests. The convex surface of the bend test specimen shall be visually examined for surface discontinuities. For acceptance, the surface shall contain no discontinuities exceeding the following dimensions:
- (1) 1/8 in. (3 mm) measured in any direction on the surface
- (2) 3/8 in. (10 mm)—the sum of the greatest dimensions of all discontinuities exceeding 1/32 in. (1 mm), but less than or equal to 1/8 in. (3 mm)
- (3) 1/4 in. (6 mm)—the maximum corner crack, except when that corner crack resulted from visible slag inclusion or other fusion type discontinuities, then the 1/8 in. (3 mm) maximum shall apply



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

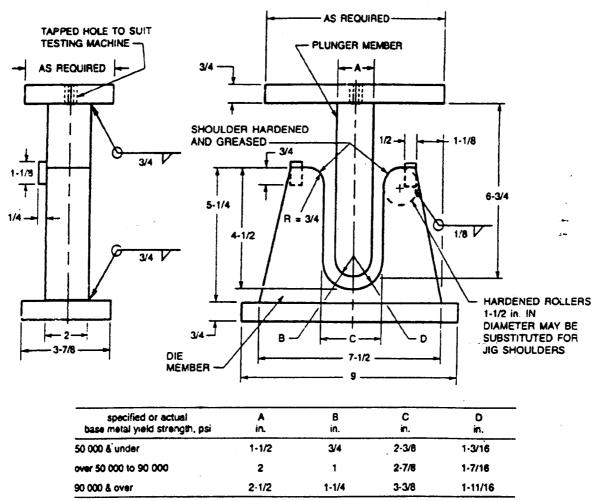
STD.AUS D1-1-ENGL 1998 BE 0784265 0508570 944 BE

124/Qualification

was the second	Dir	nensions in inches				
		Test plate		Test Pipe		
	Tp≤1 in.	1 < Tp < 1-1/2 in.	Tp ≥ 1-1/2 in.	2 in. & 3 in. diameter	6 in. & 8 in. diameter or larger job size pipe	
A—Length of reduced section	Widest fa	ce of weld + 1/2 in.	Widest face of weld + 1/2 in., 2-1/4 min			
L—Overall length, min (Note 2)	As req	uired by testing equ	uipment	As required by testing equipment		
W-Width of reduced section (Notes 3, 4)	3/4 in. min	3/4 in. min	3/4 In. min	1/2 ± 0.01	3/4 in. min	
C-Width of grip section (Notes 4, 5)	W + 1/2 in. min	W + 1/2 in. min	W + 1/2 in. min	W + 1/2 in, min	W + 1/2 in. min	
t - Specimen thickness (Notes 6, 7)	Tp Tp/n (Note 7)				sible with plane within length A	
rRadius of fillet, min	1/2	1/2	1/2	1	1	

Notes:

- 1. Tp = Nominal Thickness of the Plate.
- It is desirable, if possible, to make the length of the grip section large enough to allow the specimen to extend into the grips a distance equal to two-thirds or more of the length of the grips.
- The ends of the reduced section shall not differ in width by more than 0.004 in. Also, there may be a gradual decrease in width from
 the ends to the center, but the width of either end shall not be more than 0.015 in. larger than the width at the center.
- 4. Narrower widths (W and C) may be used when necessary. In such cases, the width of the reduced section should be as large as the width of the material being tested permits. If the width of the material is less than W, the sides may be parallel throughout the length of the specimen.
- For standard plate-type specimens, the ends of the specimen shall be symmetrical with the center line of the reduced section within 0.25 in.
- 6. The dimension t is the thickness of the specimen as provided for in the applicable material specifications. The minimum nominal thickness of 1-1/2 in, wide specimens shall be 3/16 in, except as permitted by the product specification.
- For plates over 1-1/2 in thick, specimens may be cut into approximately equal strips. Each strip shall be at least 3/4 in, thick. The test
 results of each strip shall meet the minimum requirements.
- 8. Due to limited capacity of some tensile testing machines, the specimen dimensions for Annex M steels may be as agreed upon by the Engineer and the Fabricator.


Figure 4.14—Reduced-Section Tension Specimens (see 4.8.3.4)

ضمیمه ۱۳

STD.AUS D1.1-ENGL 1998 ## 0784265 0508571 880 #

Qualification/125

Note: Plunger and interior die surfaces shall be machine-finished.

Figure 4.15—Guided Bend Test Jig (see 4.8.3)

Specimens with comer cracks exceeding 1/4 in. (6 mm) with no evidence of slag inclusions or other fusion type discontinuities shall be disregarded, and a replacement test specimen from the original weldment shall be tested.

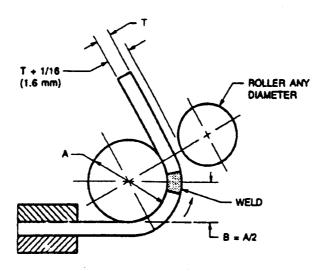
4.8.3.4 Reduced-Section Tension Specimens (See Figure 4.14). Before testing, the least width and corresponding thickness of the reduced section shall be measured. The specimen shall be ruptured under tensile load, and the maximum load shall be determined. The cross-sectional area shall be obtained by multiplying the width by the thickness. The tensile strength shall be obtained by dividing the maximum load by the cross-sectional area.

4.8.3.5 Acceptance Criteria for Reduced-Section Tension Test. The tensile strength shall be no less than

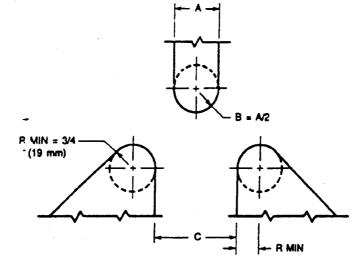
the minimum of the specified tensile range of the base metal used.

4.8.3.6 All-Weld-Metal Tension Specimen (See Figure 4.18). The test specimen shall be tested in accordance with ASTM A370, Mechanical Testing of Steel Products.

4.8.4 Macroetch Test. The weld test specimens shall be prepared with a finish suitable for macroetch examination. A suitable solution shall be used for etching to give a clear definition of the weld.


4.8.4.1 Acceptance Criteria for Macroetch Test. For acceptable qualification, the test specimen, when inspected visually, shall conform to the following requirements:

محقيظ معالمة على الأراح الأمام المعالمة


STD.AWS D1.1-ENGL 1998 MM 0784265 0508572 717 MM

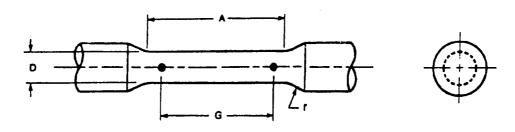
126/Qualification

specified or actual base metal yield strength, psi (MPa)	A in.	8 in.	A mm	B mm
50 000 (345) & under	1-1/2	3/4	38	19
over 50 000 to 90 000 (620)	2	1	50	25
90 000 & over	2-1/2	1-1/4	65	32

Figure 4.16—Alternative Wraparound Guided Bend Test Jig (see 4.8.3)

specified or actual base metal yield strength, psi (MPa)	A In.	B In.	C in.	A mm	B mm	C mm	
50 000 (345) & under	1-1/2	3/4	2-3/8	38	19	60	
over 50 600 to 90 000 (620)	2	1	2-7/8	50	25	73	
90 000 & over	2-1/2	1-1/4	3-3/8	65	32	86	

Figure 4.17—Alternative Roller-Equipped Guided Bend Test Jig for Bottom Ejection of Test Specimen (see 4.8.3)


آشنایی با تست و دستورالعمل جوشكاري

شركت كاوش همايش

كروه مهندسين بين المللي جوش ايران

STD.AWS D1.1-ENGL 1998 = 0784265 C508573 653

Qualification.

Dimensions in inches							
	Standard specimen	Small-size specimens proportional to standar					
Nominal diameter	0.500 in. round	0.350 in. round	0.250 in. round				
G—Gage length	2.000 ± 0.005	1.400 ± 0.005	1.000 ± 0.005				
D-Diameter (Note 1)	0.500 ± 0.010	0.350 ± 0.007	0.250 ± 0.005				
r—Radius of fillet, min	3/8	1/4	3/16				
A—Length of reduced section (Note 2), min	2-1/4	1-3/4	1-1/4				

Dimensions (metric version per ASTM E 8M)						
	Standard specimen	Small-size specimens proportional to standa				
Nominal diameter	12.5 mm round	9 mm round	6 mm round			
G—Gage length	62.5 ± 0.1	45.0 ± 0.1	30.0 ± 0.1			
D-Diameter (Note 1), mm	12.5 ± 0.2	9.0 ± 0 1	6.0 ± 0.1			
r—Radius of fillet, mm, min	10	- 8	6			
A—Length of reduced section, mm (Note 2), min	75	54	36			

1. The reduced section may have a gradual taper from the ends toward the center, with the ends not more than one percent larger in diameter than the center (controlling dimension).

Gameter man the center (commoning dimension).

If desired, the length of the reduced section may be increased to accommodate an extensometer of any convenient gage length. Reference marks for the measurement of elongation should be spaced at the indicated gage length.

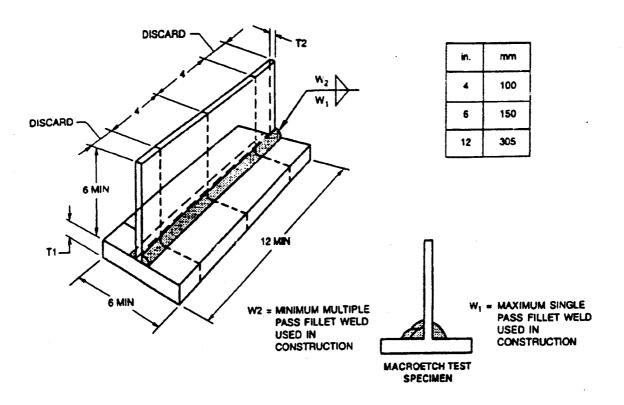

The gage length and fillets shall be as shown, but the ends may be of any form to fit the holders of the testing machine in such a way that the load shall be axial. If the ends are to be held in wedge grips, it is desirable, if possible, to make the length of the grip section great enough to allow the specimen to extend into the grips a distance equal to two-thirds or more of the length of the grips.

Figure 4.18—All-Weld-Metal Tension Specimen (see 4.8.3.6)

شرکت کاوش همایش

STD.AUS D1.1-ENGL 1998 0784265 0508576 362

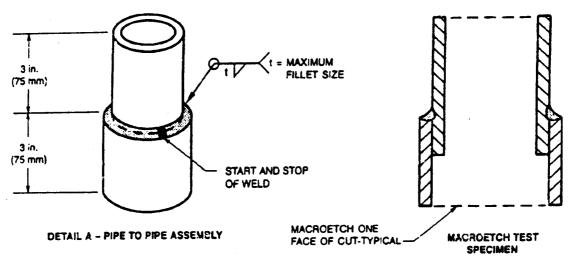
130/Qualification

	INCHES					
Weld size	T1 min*	T2 min*	-	Weld \$iZ0	T1 min*	T2 min*
3/16	1/2	3/16	-	5	12.7	4.8
1/4	3/4	1/4		. 6	19.0	6.4
5/16	1	5/16		8	25.4	8.0
3/8	1	3/8		10	25.4	9.5
1/2	1	1/2		13	25.4	12.7
5/8	1	5/8		16	25.4	15.9
3/4	1	3/4		19	25.4	19.0
> 3/4	1	1		> 19	25.4	25.4

*Note: Where the maximum plate thickness used in production is less than the value shown in the table, the maximum thickness of the production pieces may be substituted for T1 and T2.

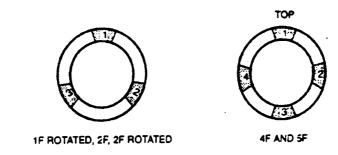
Figure 4.19—Fillet Weld Soundness Tests for WPS Qualification (see 4.11.2)

	•		مه ۱۳	ضمن			
ندبان	س ليما هنره	معند	 TY1/-: ***		******	دوره امورسی	Take of

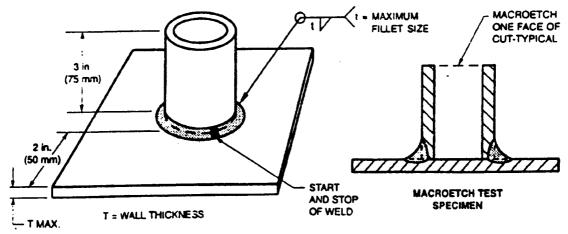

آشنایی با تست و دستورالعمل جوشکاری

كروه مهندسين بين المللي جوش ايران

شركت كاوش همايش


STD.AUS D1.1-ENGL 1998 - 0784265 0508577 279 -

Qualification/133



SEE TABLE 4.1 FOR POSITION REQUIREMENTS

NOTE: PIPE SHALL BE OF SUFFICIENT THICKNESS TO PREVENT MELT-THROUGH.

LOCATION OF TEST SPECIMENS ON WELDED PIPE - WPS QUALIFICATION

DETAIL 8 - PIPE TO PLATE ASSEMBLY

SEE TABLE 4.1 FOR POSITION REQUIREMENTS
NOTE: PIPE SHALL BE OF SUFFICIENT THICKNESS TO PREVENT MELT-THROUGH.
ALL DIMENSIONS ARE MINIMUMS.

Figure 4.20—Pipe Fillet Weld Soundness Test—WPS Qualification (see 4.11.2)

كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

TO AUS DI.1-ENGL 1988 TO 0784265 DSD8578 135

132/Qualification

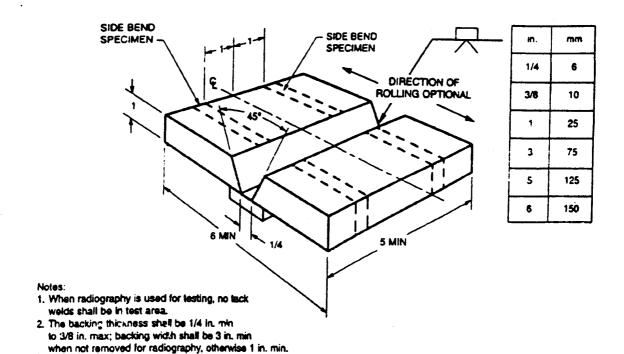
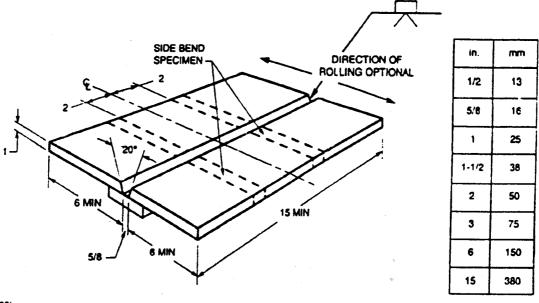



Figure 4.21—Test Plate for Unlimited Thickness—Welder Qualification (see 4.23.1)

- 1. When radiography is used for testing, no tack welds shall be in test area.
- 2. The joint configuration of a qualified WPS may be used in lieu of the groove configuration shown here.
- 3. The backing thickness shall be 3/8 in. min to 1/2 in. max, backing width shall be 3 in. min when not removed for radiography, otherwise 1-1/2 in. min.

Figure 4.22—Test Plate for Unlimited Thickness— Welding Operator Qualification (see 4.23.2)

لروه مهندسین بین المللی جوش ایران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 ## 0784265 0508579 071

Qualification/133

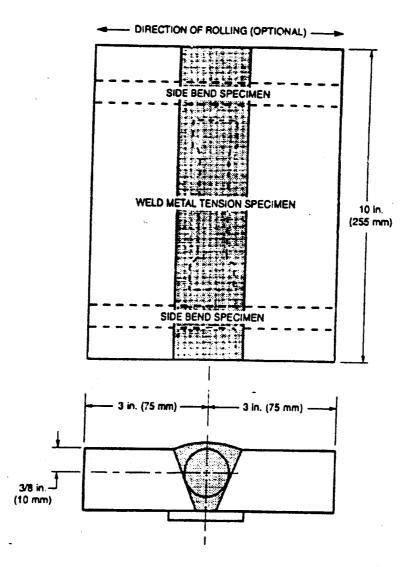


Figure 4.23—Location of Test Specimen on Welded Test Plate 1 in. (25.4 mm) Thick— Consumables Verification for Fillet Weld WPS Qualification (see 4.11.3)

- (b) The narrowest root opening to be used with a 37.5° groove angle: one test welded in the flat position and one test welded in the overhead position.
- (c) The widest root opening to be used with a 37.5° groove angle: one test to be welded in the flat position and one test to be welded in the overhead position.
- (d) for matched box connections only, the minimem groose angle, corner dimension and corner radius to be used in combination: one test in horizontal position.
- (3) The macroetch test specimens required in (1) and (2) above shall be examined for discontinuities and shall have:
 - (a) No cracks
- (b) Thorough fusion between adjacent layers of weld metal and between weld metal and base metal

- (c) Weld details conforming to the specified detail but with none of the variations prohibited in 5.24.
- (d) No undercut exceeding the values permitted in 6.9.
- (e) For porosity 1/32 in. (1 mm) or larger, accumulated porosity shall not exceed 1/4 in. (6 mm)
- (f) No accumulated slag, the sum of the greatest dimension of which shall not exceed 1/4 in. (6 mm)

Those specimens not conforming to (a) through (f) shall be considered unacceptable; (b) through (f) not applicable to backup weld.

4.12.4.2 Complete Joint Penetration Groove Welds in a T-, Y-, or K-Connection WPS with Dihedral Angles Less than 30°. The sample joint described

QW-450

كروه مهندسين بين المللي جوش ايران

WELDING DATA

Note (3)

21

<u>.</u>.

2

27

Over 3/2, but less than 3/4

Note (3)

2 (5) 2 (5)

21 when 1 < ³/₄ 27 when 1 ≥ ³/₄

27

 $\frac{1}{2}$ to less than $\frac{1}{2}$

11/2 and over 11/2 and over

2 (5) 2

8 (2) when (≥ 3/4

21 when 1 < 3/4

8 (2) 8 (2)

:

:

:

QW-451.1

GROOVE-WELD TENSION TESTS AND TRANSVERSE-BEND TESTS المرات ا QW-451.1

QW-451 Procedure Qualification Thickness Limits and Test Specimens

QW-450 SPECIMENS

	[0]	Root Bend	2
	Type and Number of Tests Required nsign and Guided-Bend Tests) [Note (4	Face Bend OW-160	
2	Type and Number of Tests Required (Tension and Guided-Bend Tests) (Note (4))	Side Bend	200 200 1 July 1 de 20 mil
		Tension Si	20 2 Car
	Thickness t of Deposited Weld Metal Qualified, in. [Notes (1) and (4)]	Max.	21-03-16
	25 <i>T</i> fled, in. 4)]	Max.	27 - 2 Some (100
	Range of Thicknes of Base Metal Qualifi (Notes (1) and (Min.	ŀ
	Plate Byte V. Ge	Coupon Welded, In.	Less than 1/14

(1) See QW-403 (.2, .3, .6, .9, .10), QW-404.32, and QW-407.4 for further limits on range of thickness qualified. Also, see QW-202 (.2, .3, .4) for allowable exceptions. (2) For the welding processes of QW-403.7 and QW-407.4 for further limits on range of thickness qualified. Also, s. (3) Four side-bend tests may be substituted for the required face- and root-bend tests, when thickness T is 3/₆ in, and over. (4) For combination of welding procesures, see QW-200.4.

For combination of welding procedures, see QW-200.4. See QW-151 (.1, .2, .3) for details on multiple specimens when coupon thicknesses are over 1 in.

1/10 to 3/2, Incl.

اشنایی با تست و دستورالعمل جوشكاري

كروه مهندسين بين العللي جوش ايران

1998 SECTION IX

QW-451.2

QW-451.2	GROOVE-WELD TENSION TESTS AND LONGITUDINAL-BEND TESTS

Thickness 7 Deposited Weld Qualified, In. Coupon Welded, In. Less than 1/16 Thickness 7 of Test Min. Min. Max. And (2) and (2) and (2) and (3) and (3) and (4) and (4) and (5) and (5) and (6)				Thickness I of			
in. Min. Max.		Range of T of Base Metal [Notes (1)	Nickness 7 Qualified, In. and (2)]	Deposited Weld Metal Qualified, in. [Notes (1) and (2)]	gyl E)	Type and Number of Tests Required (Tension and Guided-Bend Tests) [Note (2)]	quired ests)
Less than V_{10} T $2T$ $2t$	ess Tof Test n Welded, in.	Mb.	Max.	Мах.	Tension QW-150	Face Bend QW-160	Root Bend QW-160
7	ogu 1/10	7	2.7	21	2	2	2
714 W 74 HR. 714 27 27 26 27	³/e, Incl.	*\ *\ *\	27 27	21	N N	N N	

NOTES:
(1) See QW-403 (.2, .3, .6, .7, .9, .10), QW-404.32, and QW-407.4 for further limits on range of thickness qualified. These are also applicable to deposited weld metal thicknesses. Also, see QW-202 (.2, .3, .4) for allowable exceptions.
(2) For combination of welding procedures, see QW-200.4.

مهندس ليما هنرمنديان

QW-452

كروه مهندسين بين المللي جوش ايران

1998 SECTION IX

QW-452.1

Test Specimens	
pur	
Limits a	
Thickness	
Aualification	
Pet formance (
QW-452	

TRANSVERSE-BEND TESTS QW-452.1

	Deposited Weld Metal Qualified, In. (Note (2)) (See QW-310.1)		Type and Number of Tests Required (Guided-Bend Tests) [Notes (3), (4), (8)]	
Thickness of Test Coupon Weided, in. [Note (1)]	Max.	Side Bend QW-462.2	Face Bend QW-462.3(a)	Root Bend (Note (5)] QW-462.3(a)
Up to ½, Incl. Over ¾,	2 <i>t</i> 2 <i>t</i>	Note (5)	1	11
"/2 and over [Note (9)]	Max. to be welded	- ~	• • •	:

welders, the thickness t of the deposited weld metal for each welder with each process shall be determined When using one, 3

Two or more pipe lest coupons of different thicknesses may be used to determine the deposited weld metal thickness qualified and that thickness may be applied to production weids to the smallest diameter for which the welder is qualified in accordance with QW-452.3. Thickness of test coupon of 1/2 in. or over shull be used for qualifying a combination of three or more welders each of which may use the 3 3

same or a different weiding process.

To qualify for positions SG and 6G, as prescribed in QW-302.3, two root and two face-bend specimens or four side bend specimens, as applicable to the test coupon thickness, are required. 3 3

Face- and root-bend tests may be used to qualify a combination test of: one welder using two welding processes; or 3

two welders using the same or a different welding process. 3

For a 3/e in. thick coupon, a side-bend test may be substituted for each of the required face- and root-bend tests. 9698

A side-bend test may be substituted for each of the required face- and root-bend tests.

Test coupons shall be visually examined per QW-302.4.

Test coupon weld deposit shall also consist of a minimum of three layers of weld metal

ضمیمه ۱۴

گروه مهندسین بین الطانی جوش ایران ۱۲۲۸ مهندس نيما هنرمنديان

دوره اموزشی

آشنایی با تست و دستورالعمل جوشکاری



شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

WELDING DATA

QW-466.2

GENERAL NOTE: See QW-466.1 for jig dimensions and general notes.

NOTES:

- (1) Either hardened and greased shoulders or hardened rollers free to rotate shall be used.
- (2) The shoulders or rollers shall have a minimum bearing surface of 2 in. for placement of the specimen. The rollers shall be high enough above the bottom of the jig so that the specimens will clear the rollers when the ram is in the low position.
- (3) The ram shall be fitted with an appropriate base and provision made for attachment to the testing machine, and shall be of a sufficiently rigid design to prevent deflection and misalignment while making the bend test. The body of the ram may be less than the dimensions shown in column A of QW-466.1.
- (4) If desired, either the rollers or the roller supports may be made adjustable in the horizontal direction so that specimens of t thickness may be tested on the same jig.
- (5) The roller supports shall be fitted with an appropriate base designed to safeguard against deflection or misalignment and equipped with means for maintaining the rollers centered midpoint and aligned with respect to the ram.

QW-466.2 GUIDED-BEND ROLLER JIG

كروه مهندسين بين المللي جوش ايران

QW-424 Base Metals Used for Procedure Qualification

Base Metal(s) Used for Procedure Qualification Coupon

One metal from a P-Number to any metal from the same P-Number

One metal from a P-Number to any metal from any other P-Number

One metal from P-No. 3 to any metal from P-No. 3

One metal from P-No. 4 to any metal from P-No. 4

One metal from P-No. 5A to any metal from P-No. 5A

One metal from P-No. 5A to a metal from P-No. 4, or P-No. 3, or P-No. 1

One metal from P-No. 4 to a metal from P-No. 3 or P-No. 1

Any unassigned metal to the same unassigned metal

Any unassigned metal to any P-Number metal

Any unassigned metal to any other unassigned metal

Base Metals Qualified

Any metals assigned that P-Number

Any metal assigned the first P-Number to any metal assigned the second P-Number

Any P-No.3 metal to any metal from P-No. 3 or P-No. 1

Any P-No. 4 metal to any metal from P-Nos. 4, 3, or 1

Any P-No. 5A metal to any metal from P-Nos. 5A, 4, 3, or 1 metals

Any P-No. 5A metal to any metal assigned to P-No. 4, or P-No. 3, or P-No. 1

Any P-No. 4 metal to any metal assigned to P-No. 3 or P-No. 1

The unassigned metal to itself

The unassigned metal to any metal assigned to the same P-Number as the qualified metal. The first unassigned metal to the second unassigned metal.

ضمیمه ۱۶